373 research outputs found

    Conditions for Confinement and Freeze-Out

    Full text link
    Matter implies the existence of a large-scale connected cluster of a uniform nature. The appearance of such clusters as function of hadron density is specified by percolation theory. We can therefore formulate the freeze-out of interacting hadronic matter in terms of the percolation of hadronic clusters. The resulting freeze-out condition as function of temperature and baryo-chemical potential interpolates between resonance gas behaviour at low baryon density and repulsive nucleonic matter at low temperature, and it agrees well with data.Comment: 9 pages, 5 figure

    Non-saturating magnetoresistance of inhomogeneous conductors: comparison of experiment and simulation

    Get PDF
    The silver chalcogenides provide a striking example of the benefits of imperfection. Nanothreads of excess silver cause distortions in the current flow that yield a linear and non-saturating transverse magnetoresistance (MR). Associated with the large and positive MR is a negative longitudinal MR. The longitudinal MR only occurs in the three-dimensional limit and thereby permits the determination of a characteristic length scale set by the spatial inhomogeneity. We find that this fundamental inhomogeneity length can be as large as ten microns. Systematic measurements of the diagonal and off-diagonal components of the resistivity tensor in various sample geometries show clear evidence of the distorted current paths posited in theoretical simulations. We use a random resistor network model to fit the linear MR, and expand it from two to three dimensions to depict current distortions in the third (thickness) dimension. When compared directly to experiments on Ag2±δ_{2\pm\delta}Se and Ag2±δ_{2\pm\delta}Te, in magnetic fields up to 55 T, the model identifies conductivity fluctuations due to macroscopic inhomogeneities as the underlying physical mechanism. It also accounts reasonably quantitatively for the various components of the resistivity tensor observed in the experiments.Comment: 10 pages, 7 figure

    Percolation approach to phase transitions in high energy nuclear collisions

    Get PDF
    We study continuum percolation in nuclear collisions for the realistic case in which the nuclear matter distribution is not uniform over the collision volume, and show that the percolation threshold is increased compared to the standard, uniform situation. In terms of quark-gluon plasma formation this means that the phase transition threshold is pushed to higher energies.Comment: 7 pages, 4 figures (PS), LaTeX2e using fontenc, amsmath, epsfi

    Tunneling edges at strong disorder

    Full text link
    Scattering between edge states that bound one-dimensional domains of opposite potential or flux is studied, in the presence of strong potential or flux disorder. A mobility edge is found as a function of disorder and energy, and we have characterized the extended phase. "paper_FINAL.tex" 439 lines, 20366 characters In the presence of flux and/or potential disorder, the localization length scales exponentially with the width of the barrier. We discuss implications for the random-flux problem.Comment: RevTeX, 4 page

    Thermally Activated Deviations from Quantum Hall Plateaus

    Full text link
    The Hall conductivity σxy\sigma_{\rm xy} of a two-dimensional electron system is quantized in units of e2/he^2/h when the Fermi level is located in the mobility gap between two Landau levels. We consider the deviation of σxy\sigma_{\rm xy} from a quantized value caused by the thermal activation of electrons to the extended states for the case of a long range random potential. This deviation is of the form σxyexp(Δ/T)\sigma_{\rm xy}^*\exp(-\Delta/T). The prefactor σxy\sigma_{\rm xy}^* is equal to e2/he^2/h at temperatures above a characteristic temperature T2T_2. With the temperature decreasing below T2T_2, σxy\sigma_{\rm xy}^* decays according to a power law: σxy=e2h(T/T2)γ\sigma_{\rm xy}^* = \frac{e^2}{h}(T/T_2)^\gamma. Similar results are valid for a fractional Hall plateau near filling factor p/qp/q if ee is replaced by the fractional charge e/qe/q.Comment: 4 pages in PostScript (figures included

    Classical magnetotransport of inhomogeneous conductors

    Full text link
    We present a model of magnetotransport of inhomogeneous conductors based on an array of coupled four-terminal elements. We show that this model generically yields non-saturating magnetoresistance at large fields. We also discuss how this approach simplifies finite-element analysis of bulk inhomogeneous semiconductors in complex geometries. We argue that this is an explanation of the observed non-saturating magnetoresistance in silver chalcogenides and potentially in other disordered conductors. Our method may be used to design the magnetoresistive response of a microfabricated array.Comment: 12 pages, 13 figures. Minor typos correcte

    Phase transition in the collisionless regime for wave-particle interaction

    Full text link
    Gibbs statistical mechanics is derived for the Hamiltonian system coupling self-consistently a wave to N particles. This identifies Landau damping with a regime where a second order phase transition occurs. For nonequilibrium initial data with warm particles, a critical initial wave intensity is found: above it, thermodynamics predicts a finite wave amplitude in the limit of infinite N; below it, the equilibrium amplitude vanishes. Simulations support these predictions providing new insight on the long-time nonlinear fate of the wave due to Landau damping in plasmas.Comment: 12 pages (RevTeX), 2 figures (PostScript
    corecore