417 research outputs found

    Cevdet Akbay

    Get PDF
    Monomeric and polymeric anionic gemini surfactants and mixed surfactant systems in micellar electrokinetic chromatography. Part II: Characterization of chemical selectivity using two linear solvation energy relationship models Sodium di(undecenyl) tartarate monomer (SDUT), a vesicle-forming amphiphilic compound possessing two hydrophilic carboxylate headgroups and two hydrophobic undecenyl chains, was prepared and polymerized to form a polymeric vesicle (i.e., poly-SDUT). The anionic surfactants of SDUTand poly-SDUT (carboxylate head group) and sodium dodecyl sulfate, SDS (sulfate head groups) as well as mixed surfactant systems (SDS/SDUT, SDS/poly-SDUT, and SDUT/poly-SDUT) were applied as pseudostationary phases in micellar electrokinetic chromatography (MEKC). Two linear solvation energy relationship (LSER) models, i.e., solvatochromic and solvation parameter models, were successfully applied to investigate the effect of the type and composition of pseudostationary phases on the retention mechanism and selectivity in MEKC. The solvatochromic and solvation parameter models were used to help understand the fundamental nature of the solute-pseudostationary phase interactions and to characterize the properties of the pseudostationary phases (e.g., solute size and hydrogen bond-accepting ability for all pseudostationary phases). The solute types were found to have a significant effect on the LSER system coefficients and on the predicted retention factors. Although both LSER models provide the same information, the solvation parameter model is found to provide much better results both statistically and chemically than the solvatochromic model

    Fluorescence-Based Ratiometric Nanosensor for Selective Imaging of Cancer Cells

    Get PDF
    Herein, we report the synthesis and characterization of a nanosensor developed from a group of uniform materials based on organic salts (GUMBOS). This sensor is composed of three ionic species, namely, fluorescein, rhodamine B, and tetradecyltrihexyl phosphonium (P-66614) ions. Nanoparticles prepared from this three-component GUMBOS, termed nanoGUMBOS, exhibited increased fluorescence at two wavelengths with increases in pH values. The ratio of fluorescence emission corresponding to FL and RhB components of these nanoGUMBOS also changed with pH, allowing ratiometric analysis of pH through fluorescence measurements. Peak ratios were significantly different at pH 5 and pH 7, indicating potential applications of this nanomaterial as a cancer diagnostic tool. In this regard, in vitro fluorescence microscopy was employed to image cancerous and normal breast cells incubated with nanoGUMBOS. Fluorescence imaging of cancer cells showed higher uptake of these nanoGUMBOS and more pervasive fluorescence intensity in comparison with normal cells. Thus, the synthesized novel nanomaterial shows a great potential for rapid visual imaging of cancer cells

    A comparison of ionic liquids to molecular organic solvents as additives for chiral separations in micellar electrokinetic chromatorgraphy

    Get PDF
    In this study, we report the effects of adding ionic liquids (ILs), as compared to adding conventional molecular organic solvents (MOSs), to aqueous buffer solutions containing molecular micelles in the separation of chiral analyte mixtures in micellar EKC (MEKC). The molecular micelle used in this study was polysodium oleyl-L-leucylvalinate (poly-L-SOLV). The ILs were 1-alkyl-3-methylimidazolium tetrafluoroborate, where the alkyl group was ethyl, butyl, hexyl, or octyl. These ILs were chosen due to their hydrophobicity, good solvating, and electrolyte properties. Thus, it was expected that these ILs would have favorable interactions with chiral analytes and not adversely affect the background current. Common CE buffers, mixed with a molecular micelle, and an IL or a MOS, were used for these chiral separations. The buffers containing an IL in the concentration range of 0.02-0.1 v/v were found to support a reasonable current when an electric field strength of 500 V/cm was applied across the capillary. However, a current break down was observed for the buffers containing more than 60% v/v MOS on application of the above-mentioned electric field. The chiral resolution and selectivity of the analytes were dependent on the concentration and type of IL or MOS used. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Pyrenylpyridines: Sky-Blue Emitters for Organic Light-Emitting Diodes

    Get PDF
    A novel sky-blue-emitting tripyrenylpyridine derivative, 2,4,6-tri(1-pyrenyl)-pyridine (2,4,6-TPP), has been synthesized using a Suzuki coupling reaction and compared with three previously reported isomeric dipyrenylpyridine (DPP) analogues (2,4-di(1 pyrenyl)pyridine (2,4-DPP), 2,6-di(1-pyrenyl)pyridine (2,6-DPP), and 3,5-di(1-pyrenyl)-pyridine (3,5-DPP)). 0 revealed by single-crystal X-ray analysis and computational simulations, all compounds possess highly twisted conformations in the solid state with interpyrene torsional angles of 42.3 degrees-57.2 degrees. These solid-state conformations and packing variations of pyrenylpyridines could be correlated to observed variations in physical characteristics such as photo/thermal stability and spectral properties, but showed only marginal influence on electrochemical properties. The novel derivative, 2,4,6-TPP, exhibited the lowest degree of crystallinity as revealed by powder X-ray diffraction analysis and formed amorphous thin films as verified using grazing-incidence wide-angle X-ray scattering. This compound also showed high thermal/photo stability relative to its disubstituted analogues (DPPs). Thus, a nondoped organic light-emitting diode (OLED) prototype was fabricated using 2,4,6-TPP as the emissive layer, which displayed a sky-blue electroluminescence with Commission Internationale de L\u27Eclairage (CIE) coordinates of (0.18, 0.34). This OLED prototype achieved a maximum external quantum efficiency of 6.0 +/- 1.2% at 5 V. The relatively high efficiency for this simple-architecture device reflects a good balance of electron and hole transporting ability of 2,4,6-TPP along with efficient exciton formation in this material and indicates its promise as an emitting material for design of blue OLED devices

    Group of Uniform Materials Based on Organic Salts (GUMBOS): A Review of Their Solid State Properties and Applications

    Get PDF
    Ionic liquids (ILs) are defined as organic salts with melting points below 100 °C. Such ionic compounds are typically formed using bulky cations and/or bulky anions in order to produce liquids or lower melting solids. ILs have been widely explored in several research areas including catalysis, remediation, solvents, separations, and many others. The utility of such compounds has also been recently broadened to include solid phase ionic materials. Thus, researchers have pushed the boundaries of ILs chemistry toward the solid state and have hypothesized that valuable properties of ILs can be preserved and fine-tuned to achieve comparable properties in the solid state. In addition, as with ILs, tunability of these solid-phase materials can be achieved through simple counterion metathesis reactions. These solid-state forms of ILs have been designated as a group of uniform materials based on organic salts (GUMBOS). In contrast to ILs, these materials have an expanded melting point range of 25 to 250 °C. In this chapter, we focus on recent developments and studies from the literature that provide for fine tuning and enhancing properties through transformation and recycling of diverse ionic compounds such as dyes, antibiotics, and others into solid state ionic materials of greater utility

    Increasing Access for Economically Disadvantaged Students: The NSF/CSEM & S-STEM Programs at Louisiana State University

    Get PDF
    Increasing college degree attainment for students from disadvantaged backgrounds is a prominent component of numerous state and federal legislation focused on higher education. In 1999, the National Science Foundation (NSF) instituted the Computer Science, Engineering, and Mathematics Scholarships (CSEMS) program; this initiative was designed to provide greater access and support to academically talented students from economically disadvantaged backgrounds. Originally intended to provide financial support to lower income students, this NSF program also advocated that additional professional development and advising would be strategies to increase undergraduate persistence to graduation. This innovative program for economically disadvantaged students was extended in 2004 to include students from other disciplines including the physical and life sciences as well as the technology fields, and the new name of the program was Scholarships for Science, Technology, Engineering and Mathematics (S-STEM). The implementation of these two programs in Louisiana State University (LSU) has shown significant and measurable success since 2000, making LSU a Model University in providing support to economically disadvantaged students within the STEM disciplines. The achievement of these programs is evidenced by the graduation rates of its participants. This report provides details on the educational model employed through the CSEMS/S-STEM projects at LSU and provides a path to success for increasing student retention rates in STEM disciplines. While the LSU\u27s experience is presented as a case study, the potential relevance of this innovative mentoring program in conjunction with the financial support system is discussed in detail. © 2011 The Author(s)

    Efficient Low-Cost Procedure for Microextraction of Estrogen from Environmental Water Using Magnetic Ionic Liquids

    Get PDF
    In this study, three magnetic ionic liquids (MILs) were investigated for extraction of four estrogens, i.e., estrone (E1), estradiol (E2), estriol (E3), and ethinylestradiol (EE2), from environmental water. The cation trihexyl(tetradecyl)phosphonium ([P66614]+), selected to confer hydrophobicity to the resulting MIL, was combined with tetrachloroferrate(III), ferricyanide, and dysprosium thiocyanate to yield ([P66614][FeCl4]), ([P66614]3[Fe(CN)6]), and ([P66614]5[Dy(SCN)8]), respectively. After evaluation of various strategies to develop a liquid-liquid microextraction technique based on synthesized MILs, we placed the MILs onto a magnetic stir bar and used them as extracting solvents. After extraction, the MIL-enriched phase was dissolved in methanol and injected into an HPLC-UV for qualitative and quantitative analysis. An experimental design was used to simultaneously evaluate the effect of select variables and optimization of extraction conditions to maximize the recovery of the analytes. Under optimum conditions, limits of detection were in the range of 0.2 (for E3 and E2) and 0.5 μg L-1 (for E1), and calibration curves exhibited linearity in the range of 1-1000 μg L-1 with correlation coefficients higher than 0.998. The percent relative standard deviation (RSD) was below 5.0%. Finally, this method was used to determine concentration of estrogens in real lake and sewage water samples

    Efficient low-cost procedure for microextraction of estrogen from environmental water using magnetic ionic liquids

    Get PDF
    In this study, three magnetic ionic liquids (MILs) were investigated for extraction of four estrogens, i.e., estrone (E1), estradiol (E2), estriol (E3), and ethinylestradiol (EE2), from environmental water. The cation trihexyl(tetradecyl)phosphonium ([P66614]+), selected to confer hydrophobicity to the resulting MIL, was combined with tetrachloroferrate(III), ferricyanide, and dysprosium thiocyanate to yield ([P66614 ][FeCl4 ]), ([P66614 ]3[Fe(CN)6 ]), and ([P66614]5[Dy(SCN)8 ]), respectively. After evaluation of various strategies to develop a liquid–liquid microextraction technique based on synthesized MILs, we placed the MILs onto a magnetic stir bar and used them as extracting solvents. After extraction, the MIL-enriched phase was dissolved in methanol and injected into an HPLC–UV for qualitative and quantitative analysis. An experimental design was used to simultaneously evaluate the effect of select variables and optimization of extraction conditions to maximize the recovery of the analytes. Under optimum conditions, limits of detection were in the range of 0.2 (for E3 and E2) and 0.5 µg L−1 (for E1), and calibration curves exhibited linearity in the range of 1–1000 µg L−1 with correlation coefficients higher than 0.998. The percent relative standard deviation (RSD) was below 5.0%. Finally, this method was used to determine concentration of estrogens in real lake and sewage water samples.Fil: Berton, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. State University of Louisiana; Estados Unidos. University of Calgary; CanadáFil: Siraj, Noureen. State University of Louisiana; Estados Unidos. University of Arkansas at Little Rock; Estados UnidosFil: Das, Susmita. State University of Louisiana; Estados Unidos. Amity University Kolkata; IndiaFil: de Rooy, Sergio. State University of Louisiana; Estados Unidos. Shell Oil Products; Estados UnidosFil: Wuilloud, Rodolfo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Warner, Isiah M.. State University of Louisiana; Estados Unido
    • …
    corecore