29 research outputs found

    In mice, proteinuria and renal inflammatory responses to albumin overload are strain-dependent.

    Get PDF
    BACKGROUND: The availability of genetically modified mice has increased the need for relevant mouse models of renal disease, but widely used C57BL/6 mice often show resistance to proteinuria. 129/Sv mice are considered more sensitive to certain renal models. Albumin overload, an important model of proteinuric disease, induces marked proteinuria in rats but barely in C57BL/6 mice. We hypothesized that albumin overload would induce more proteinuria in 129S2/Sv than C57BL/6J mice. METHODS: Male and female C57BL/6J and 129S2/Sv mice received bovine serum albumin (BSA) for 11 days. Control groups received saline injections. Injected BSA was immunohistochemically localized to study intrarenal handling of overloaded protein. Renal macrophage infiltration (F4/80 immuno-staining) and glomerular ultrastructure (electron microscopy) were assessed. RESULTS: The BSA-treated groups were similarly hyperproteinemic at Day 11 (D11). Proteinuria differed widely. In C57BL/6J mice, it remained unchanged in females but significantly, though mildly, increased in males (from 3+/-1 to 8+/-2 mg/day, P < 0.05). In 129S2/Sv, proteinuria was marked in both males and females (4+/-1 to 59+/-14, and 0.6+/-0.2 to 29+/-9 mg/day, respectively, both P < 0.01). Proteinuria was accompanied by tubulo-interstitial macrophage infiltration in 129S2/Sv mice. Injected BSA was visualized within glomeruli in both strains and in the urinary space and tubules of 129S2/Sv but not C57BL/6J mice, indicating much greater glomerular leakage in the former. No glomerular macrophages or ultra-structural differences were detected. CONCLUSION: There are major strain differences in the proteinuria and renal inflammatory response of mice to albumin overload, which are not due to structural variation in the filtration barrier but possibly to functional differences in glomerular protein permeability

    Increased risk of A(H1N1)pdm09 influenza infection in UK pig industry workers compared to a general population cohort

    Get PDF
    Background: Pigs are mixing vessels for influenza viral reassortment but the extent of influenza transmission between swine and humans is not well understood. Objectives: To assess whether occupational exposure to pigs is a risk factor for human infection with human and swine-adapted influenza viruses. Methods: UK pig industry workers were frequency-matched on age, region, sampling month, and gender with a community-based comparison group from the Flu Watch study. HI assays quantified antibodies for swine and human A(H1) and A(H3) influenza viruses (titres≥40 considered seropositive and indicative of infection). Virus-specific associations between seropositivity and occupational pig exposure were examined using multivariable regression models adjusted for vaccination. Pigs on the same farms were also tested for seropositivity. Results: 42% of pigs were seropositive to A(H1N1)pdm09. Pig industry workers showed evidence of increased odds of A(H1N1)pdm09 seropositivity compared to the comparison group, albeit with wide confidence intervals (CI), Adjusted Odds Ratio after accounting for possible cross reactivity with other swine A(H1) viruses (aOR) 25.30, 95% CI [1.44-536.34], p=0.028. Conclusion: The results indicate that A(H1N1)pdm09 virus was common in UK pigs during the pandemic and subsequent period of human A(H1N1)pdm09 circulation, and occupational exposure to pigs was a risk factor for human infection. Influenza immunization of pig industry workers may reduce transmission and the potential for virus reassortment

    Increased risk of A(H1N1)pdm09 influenza infection in UK pig industry workers compared to a general population cohort.

    Get PDF
    BACKGROUND: Pigs are mixing vessels for influenza viral reassortment, but the extent of influenza transmission between swine and humans is not well understood. OBJECTIVES: To assess whether occupational exposure to pigs is a risk factor for human infection with human and swine-adapted influenza viruses. METHODS: UK pig industry workers were frequency-matched on age, region, sampling month, and gender with a community-based comparison group from the Flu Watch study. HI assays quantified antibodies for swine and human A(H1) and A(H3) influenza viruses (titres ≥ 40 considered seropositive and indicative of infection). Virus-specific associations between seropositivity and occupational pig exposure were examined using multivariable regression models adjusted for vaccination. Pigs on the same farms were also tested for seropositivity. RESULTS: Forty-two percent of pigs were seropositive to A(H1N1)pdm09. Pig industry workers showed evidence of increased odds of A(H1N1)pdm09 seropositivity compared to the comparison group, albeit with wide confidence intervals (CIs), adjusted odds ratio after accounting for possible cross-reactivity with other swine A(H1) viruses (aOR) 25·3, 95% CI (1·4-536·3), P = 0·028. CONCLUSION: The results indicate that A(H1N1)pdm09 virus was common in UK pigs during the pandemic and subsequent period of human A(H1N1)pdm09 circulation, and occupational exposure to pigs was a risk factor for human infection. Influenza immunisation of pig industry workers may reduce transmission and the potential for virus reassortment.This work was supported by joint funding from the Biotechnology and Biological Sciences Research Council (BBSRC), the Medical Research Council (MRC), and the Wellcome Trust (WT) [(BBSRC/MRC/WT) BB/H014306/1; (MRC/WT) MC_U122785833; (MRC) G0800767 and G0600511]; Alborada Trust (to J.L.N.W.); the RAPIDD programme of the Science & Technology Directorate (to J.L.N.W.); US Department of Homeland Security (to J.L.N.W.); and the Fogarty International Center at the National Institutes of Health (to J.L.N.W.). DAI is supported by a fellowship from the National Institute for Health Research (NIHR) (PDF-2012-05-305) (this research is independent and the views expressed in this publication are those of the authors and not necessarily those of the Department of Health or NIHR).This is the final version of the article. It first appeared from Wiley via https://doi.org//10.1111/irv.12364/abstract

    Influenza vaccination for immunocompromised patients: systematic review and meta-analysis from a public health policy perspective.

    Get PDF
    Immunocompromised patients are vulnerable to severe or complicated influenza infection. Vaccination is widely recommended for this group. This systematic review and meta-analysis assesses influenza vaccination for immunocompromised patients in terms of preventing influenza-like illness and laboratory confirmed influenza, serological response and adverse events

    Safety and immunogenicity of the two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in children in Sierra Leone: a randomised, double-blind, controlled trial

    Get PDF
    Background—Children account for a substantial proportion of cases and deaths from Ebola virus disease. We aimed to assess the safety and immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vectorbased vaccine, encoding glycoproteins from the Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in a paediatric population in Sierra Leone. Methods—This randomised, double-blind, controlled trial was done at three clinics in Kambia district, Sierra Leone. Healthy children and adolescents aged 1–17 years were enrolled in three age cohorts (12–17 years, 4–11 years, and 1–3 years) and randomly assigned (3:1), via computer-generated block randomisation (block size of eight), to receive an intramuscular injection of either Ad26.ZEBOV (5 × 1010 viral particles; first dose) followed by MVA-BN-Filo (1 × 108 infectious units; second dose) on day 57 (Ebola vaccine group), or a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo (second dose) on day 57 (control group). Study team personnel (except for those with primary responsibility for study vaccine preparation), participants, and their parents or guardians were masked to study vaccine allocation. The primary outcome was safety, measured as the occurrence of solicited local and systemic adverse symptoms during 7 days after each vaccination, unsolicited systemic adverse events during 28 days after each vaccination, abnormal laboratory results during the study period, and serious adverse events or immediate reportable events throughout the study period. The secondary outcome was immunogenicity (humoral immune response), measured as the concentration of Ebola virus glycoprotein-specific binding antibodies at 21 days after the second dose. The primary outcome was assessed in all participants who had received at least one dose of study vaccine and had available reactogenicity data, and immunogenicity was assessed in all participants who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response. This study is registered at ClinicalTrials.gov, NCT02509494. Findings—From April 4, 2017, to July 5, 2018, 576 eligible children or adolescents (192 in each of the three age cohorts) were enrolled and randomly assigned. The most common solicited local adverse event during the 7 days after the first and second dose was injection-site pain in all age groups, with frequencies ranging from 0% (none of 48) of children aged 1–3 years after placebo injection to 21% (30 of 144) of children aged 4–11 years after Ad26.ZEBOV vaccination. The most frequently observed solicited systemic adverse event during the 7 days was headache in the 12–17 years and 4–11 years age cohorts after the first and second dose, and pyrexia in the 1–3 years age cohort after the first and second dose. The most frequent unsolicited adverse event after the first and second dose vaccinations was malaria in all age cohorts, irrespective of the vaccine types. Following vaccination with MenACWY, severe thrombocytopaenia was observed in one participant aged 3 years. No other clinically significant laboratory abnormalities were observed in other study participants, and no serious adverse events related to the Ebola vaccine regimen were reported. There were no treatment-related deaths. Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second dose of the Ebola virus vaccine regimen were observed in 131 (98%) of 134 children aged 12–17 years (9929 ELISA units [EU]/mL [95% CI 8172–12 064]), in 119 (99%) of 120 aged 4–11 years (10 212 EU/mL [8419–12 388]), and in 118 (98%) of 121 aged 1–3 years (22 568 EU/mL [18 426–27 642]). Interpretation—The Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen was well tolerated with no safety concerns in children aged 1–17 years, and induced robust humoral immune responses, suggesting suitability of this regimen for Ebola virus disease prophylaxis in children

    Safety and long-term immunogenicity of the two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in adults in Sierra Leone: a combined open-label, non-randomised stage 1, and a randomised, double-blind, controlled stage 2 trial

    Get PDF
    Background The Ebola epidemics in west Africa and the Democratic Republic of the Congo highlight an urgent need for safe and effective vaccines to prevent Ebola virus disease. We aimed to assess the safety and long-term immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in Sierra Leone, a country previously affected by Ebola. Methods The trial comprised two stages: an open-label, non-randomised stage 1, and a randomised, double-blind, controlled stage 2. The study was done at three clinics in Kambia district, Sierra Leone. In stage 1, healthy adults (aged ≥18 years) residing in or near Kambia district, received an intramuscular injection of Ad26.ZEBOV (5×1010 viral particles) on day 1 (first dose) followed by an intramuscular injection of MVA-BN-Filo (1×108 infectious units) on day 57 (second dose). An Ad26.ZEBOV booster vaccination was offered at 2 years after the first dose to stage 1 participants. The eligibility criteria for adult participants in stage 2 were consistent with stage 1 eligibility criteria. Stage 2 participants were randomly assigned (3:1), by computer-generated block randomisation (block size of eight) via an interactive web-response system, to receive either the Ebola vaccine regimen (Ad26.ZEBOV followed by MVA-BN-Filo) or an intramuscular injection of a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo on day 57 (second dose; control group). Study team personnel, except those with primary responsibility for study vaccine preparation, and participants were masked to study vaccine allocation. The primary outcome was the safety of the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen, which was assessed in all participants who had received at least one dose of study vaccine. Safety was assessed as solicited local and systemic adverse events occurring in the first 7 days after each vaccination, unsolicited adverse events occurring in the first 28 days after each vaccination, and serious adverse events or immediate reportable events occurring up to each participant’s last study visit. Secondary outcomes were to assess Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second vaccine in a per-protocol set of participants (ie, those who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response) and to assess the safety and tolerability of the Ad26.ZEBOV booster vaccination in stage 1 participants who had received the booster dose. This study is registered at ClinicalTrials.gov, NCT02509494. Findings Between Sept 30, 2015, and Oct 19, 2016, 443 participants (43 in stage 1 and 400 in stage 2) were enrolled; 341 participants assigned to receive the Ad26.ZEBOV and MVA-BN-Filo regimen and 102 participants assigned to receive the MenACWY and placebo regimen received at least one dose of study vaccine. Both regimens were well tolerated with no safety concerns. In stage 1, solicited local adverse events (mostly mild or moderate injection-site pain) were reported in 12 (28%) of 43 participants after Ad26.ZEBOV vaccination and in six (14%) participants after MVA-BN-Filo vaccination. In stage 2, solicited local adverse events were reported in 51 (17%) of 298 participants after Ad26.ZEBOV vaccination, in 58 (24%) of 246 after MVA-BN-Filo vaccination, in 17 (17%) of 102 after MenACWY vaccination, and in eight (9%) of 86 after placebo injection. In stage 1, solicited systemic adverse events were reported in 18 (42%) of 43 participants after Ad26.ZEBOV vaccination and in 17 (40%) after MVA-BN-Filo vaccination. In stage 2, solicited systemic adverse events were reported in 161 (54%) of 298 participants after Ad26.ZEBOV vaccination, in 107 (43%) of 246 after MVA-BN-Filo vaccination, in 51 (50%) of 102 after MenACWY vaccination, and in 39 (45%) of 86 after placebo injection. Solicited systemic adverse events in both stage 1 and 2 participants included mostly mild or moderate headache, myalgia, fatigue, and arthralgia. The most frequent unsolicited adverse event after the first dose was headache in stage 1 and malaria in stage 2. Malaria was the most frequent unsolicited adverse event after the second dose in both stage 1 and 2. No serious adverse event was considered related to the study vaccine, and no immediate reportable events were observed. In stage 1, the safety profile after the booster vaccination was not notably different to that observed after the first dose. Vaccine-induced humoral immune responses were observed in 41 (98%) of 42 stage 1 participants (geometric mean binding antibody concentration 4784 ELISA units [EU]/mL [95% CI 3736–6125]) and in 176 (98%) of 179 stage 2 participants (3810 EU/mL [3312–4383]) at 21 days after the second vaccination. Interpretation The Ad26.ZEBOV and MVA-BN-Filo vaccine regimen was well tolerated and immunogenic, with persistent humoral immune responses. These data support the use of this vaccine regimen for Ebola virus disease prophylaxis in adults

    Relatório de estágio em farmácia comunitária

    Get PDF
    Relatório de estágio realizado no âmbito do Mestrado Integrado em Ciências Farmacêuticas, apresentado à Faculdade de Farmácia da Universidade de Coimbr

    Enterprises in agroforestry system as a means of economic empowerment: awareness on its socio-economic importance

    No full text
    Agroforestry practice has a long history but recently has received more attention owing to the problems long-faced on forest reserves depletion and shortage of food supply. Agroforestry is becoming accepted as a land-use system that is capable of producing both food and wood while at the same time reduce forest resource user de-pendency as a means of livelihood thereby conserving and rehabilitating ecosystems. Enterprise in agroforestry is seen as a practice that serves as an alternative to the use and overuse of forest reserve resources. This paper re-views the studies of agroforestry businesses that are capable of sustaining a household in forest communities and rural areas, especially those that depend on forest resources. It enumerated on the processes of production of Shea-butter (Vitellaria paradoxa), Mushroom, locus beans (Parkia biglobosa) and setting up of nursery for seed-ling raising as a means of livelihood. It also talks about the cost implication and accruing profits. This paper be-lieves that education/training programs on agroforestry enterprises are eminent, with the conclusion that there is a dire need for an aggressive awareness on Agroforestry enterprises to persuade forest user as a better option of means of livelihood in order to save forest reserves from depletion as well rescue forest endangered species. Agroforestry, Enterprise, land-use, multi-cropping, communication, awarenessPraktyka agroleśna ma długą historię, ale ostatnio poświęcono jej więcej uwagi ze względu na problemy związane z wyczerpywaniem rezerw leśnych i brakiem zapasów żywności. System agroleśny staje się akceptowany jako sys-tem zagospodarowania przestrzennego, który jest w stanie wytwarzać zarówno żywność, jak i drewno, jednocze-śnie zmniejszając zależność od zasobów leśnych jako środka utrzymania, a tym samym ochrony i rehabilitacji eko-systemów. Przedsiębiorstwa agroleśne są postrzegane jako praktyka, która służy jako alternatywa dla wykorzysty-wania i nadmiernego wykorzystywania zasobów rezerwatów leśnych. W artykule dokonano przeglądu badań przedsiębiorstw agroleśnych, które są w stanie utrzymać gospodarstwo domowe w społecznościach leśnych i na obszarach wiejskich, zwłaszcza tych zależnych od zasobów leśnych. Wymieniono w nim procesy produkcji masła shea (Vitellaria paradoxa), grzybów, locus fasoli (Parkia biglobosa) i założenia szkółki dla hodowli sadzonek jako środka do życia. Artykuł mówi także o wpływie na koszty i naliczaniu zysków. W niniejszym dokumencie stwierdzo-no, że programy edukacyjne / szkoleniowe dotyczące przedsiębiorstw agroleśnych są bardzo ważne, a także, że istnieje pilna potrzeba świadomości przedsiębiorstw agroleśnych, aby przekonać użytkowników lasów, że stano-wią one lepszą opcję oszczędzania rezerwatów leśnych przed wyczerpaniem oraz ratowaniem zagrożonych gatun-ków leśnych. agroleśnictwo, przedsiębiorczość, zagospodarowanie terenu, uprawa wielu roślin, komunikacja, świadomoś

    Resistance to oxidative stress by chronic infusion of angiotensin II in mouse kidney is not mediated by the AT2 receptor.

    No full text
    Wild-type mice are resistant to ANG II-induced renal injury and hence form an attractive model to study renal defense against ANG II. The present study tested whether ANG II induces expression of antioxidative genes via the AT2 receptor in renal cortex and thereby counteracts prooxidative forces. ANG II was infused in female C57BL/6J mice for 28 days and a subgroup received AT2 receptor antagonist (PD-123,319) for the last 3 days. ANG II induced hypertension and aortic hypertrophy; proteinuria and renal injury were absent. Urinary nitric oxide metabolites (NOx) were decreased, and lipid peroxide (TBARS) excretion remained unchanged. Expression of NADPH oxidase components was decreased in renal cortex but induced in aorta. Heme oxygenase-1 (HO-1) was induced in both renal cortex and aorta. In contrast, ANG II suggestively increased AT2 receptor expression in kidney but not in aorta. AT2 receptor blockade enhanced hypertension in ANG II-infused mice, reversed ANG II effects on NOx excretion, but did not affect TBARS. Despite its prohypertensive effect, expression of prooxidative genes in the renal cortex decreased rather than increased after short-term AT2 receptor blockade and renal HO-1 induction after ANG II was normalized. Thus chronic ANG II infusion in mice induces hypertension but not oxidative stress. In contrast to the response in aorta, gene expression of components of NADPH-oxidase was not enhanced in renal cortex. Although ANG II administration induced renal cortical AT2 receptor expression, blockade of that receptor did not unveil the AT2 receptor as intrarenal dampening factor of prooxidative forces

    Prevalence of serum bactericidal antibody to serogroup C Neisseria meningitidis in England a decade after vaccine introduction.

    No full text
    Serogroup C meningococcal disease incidence and carriage declined rapidly in the United Kingdom after infant serogroup C conjugate vaccination was introduced in 1999, with catch-up vaccination for children under 18 years. Antibody levels and effectiveness waned quickly in children vaccinated at 2, 3, and 4 months of age. Therefore, in 2006, the current revised schedule of doses at 3, 4, and 12 months was introduced. This study assessed age-specific protection in 2009 compared with data from historical prevaccination and early postvaccination studies. Rabbit complement serum bactericidal antibody (SBA) was measured in anonymously banked serum samples collected in England in 2009 (n = 1,174), taking titers of ≥ 8 as protective. Age-stratified proportions of SBA titers that were ≥ 8 and geometric mean titers were compared. SBA titers varied markedly by birth cohort and time since vaccination. Overall, 35% of samples (95% confidence interval [CI], 33 to 38%) had titers that were ≥ 8. Only in cohorts eligible for catch-up vaccination did the majority of individuals have protective antibody levels. Antibody levels were higher in children eligible for vaccination at primary and secondary school ages, compared to those eligible below the age of 5 years. In those eligible for completed vaccination under the current schedule, protective levels were very modest and there was no evidence of superiority to cohorts that were eligible for the previous schedule. This supports a need for older childhood or adolescent booster vaccination in those previously eligible for vaccination during the infant, toddler, or preschool periods, to maintain direct protection and potentially enhance population immunity
    corecore