1,280 research outputs found

    Intra-Landau level polarization effect for a striped Hall gas

    Full text link
    We calculate the polarization function including only intra-Landau level correlation effects of striped Hall gas. Using the polarization function, the dielectric function, the dispersion of the plasmon and the correlation energy are computed in a random phase approximation (RPA) and generalized random phase approximation (GRPA). The plasmon becomes anisotropic and gapless owing to the anisotropy of the striped Hall gas and two dimensionality of the quantum Hall system. The plasmon approximately agrees with the phonon derived before by the single mode approximation. The (G)RPA correlation energy is compared with other numerical calculations.Comment: 15 pages,15 figures, revtex4, published versio

    Pion decay constant for the Kogut-Susskind quark action in quenched lattice QCD

    Get PDF
    We present a study for the pion decay constant fπf_\pi in the quenched approximation to lattice QCD with the Kogut-Susskind (KS) quark action, with the emphasis given to the renormalization problems. Numerical simulations are carried out at the couplings β=6.0\beta = 6.0 and 6.2 on 323×6432^3\times 64 and 483×6448^3\times 64 lattices, respectively. The pion decay constant is evaluated for all KS flavors via gauge invariant and non-invariant axial vector currents with the renormalization constants calculated by both non-perturbative method and perturbation theory. We obtain fπ=89(6)f_\pi = 89(6) MeV in the continuum limit as the best value using the partially conserved axial vector current, which requires no renormalization. From a study for the other KS flavors we find that the results obtained with the non-perturbative renormalization constants are well convergent among the KS flavors in the continuum limit, confirming restoration of SU(4)A\rm SU(4)_A flavor symmetry, while perturbative renormalization still leaves an apparent flavor breaking effect even in the continuum limit.Comment: LaTex, 27 pages, 35 eps figures, uses revtex and eps

    Lattice QCD Calculation of the Kaon B-parameter with the Wilson Quark Action

    Get PDF
    The kaon B parameter is calculated in quenched lattice QCD with the Wilson quark action. The mixing problem of the \Delta s=2 four-quark operators is solved non-perturbatively with full use of chiral Ward identities, and this method enables us to construct the weak four-quark operators exhibiting good chiral behavior. We find B_K(NDR, 2GeV)=0.562(64) in the continuum limit, which agrees with the value obtained with the Kogut-Susskind quark action.Comment: 11 pages, latex source-file, 4 figures as ps-fil

    Light hadron spectroscopy in two-flavor QCD with small sea quark masses

    Get PDF
    We extend the study of the light hadron spectrum and the quark mass in two-flavor QCD to smaller sea quark mass, corresponding to mPS/mV=0.60m_{PS}/m_{V}=0.60--0.35. Numerical simulations are carried out using the RG-improved gauge action and the meanfield-improved clover quark action at β=1.8\beta=1.8 (a=0.2a = 0.2 fm from ρ\rho meson mass). We observe that the light hadron spectrum for small sea quark mass does not follow the expectation from chiral extrapolations with quadratic functions made from the region of mPS/mV=0.80m_{PS}/m_{V}=0.80--0.55. Whereas fits with either polynomial or continuum chiral perturbation theory (ChPT) fails, the Wilson ChPT (WChPT) that includes a2a^2 effects associated with explicit chiral symmetry breaking successfully fits the whole data: In particular, WChPT correctly predicts the light quark mass spectrum from simulations for medium heavy quark mass, such as m_{PS}/m_V \simgt 0.5. Reanalyzing the previous data %at mPS/mV=0.80m_{PS}/m_{V}=0.80--0.55 with the use of WChPT, we find the mean up and down quark mass being smaller than the previous result from quadratic chiral extrapolation by approximately 10%, mudMSˉ(μ=2GeV)=3.11(17)m_{ud}^{\bar{\rm MS}}(\mu=2 {GeV}) = 3.11(17) [MeV] in the continuum limit.Comment: 33 page

    Partial Flavor Symmetry Restoration for Chiral Staggered Fermions

    Full text link
    We study the leading discretization errors for staggered fermions by first constructing the continuum effective Lagrangian including terms of O(a^2), and then constructing the corresponding effective chiral Lagrangian. The terms of O(a^2) in the continuum effective Lagrangian completely break the SU(4) flavor symmetry down to the discrete subgroup respected by the lattice theory. We find, however, that the O(a^2) terms in the potential of the chiral Lagrangian maintain an SO(4) subgroup of SU(4). It follows that the leading discretization errors in the pion masses are SO(4) symmetric, implying three degeneracies within the seven lattice irreducible representations. These predictions hold also for perturbatively improved versions of the action. These degeneracies are observed, to a surprising degree of accuracy, in existing data. We argue that the SO(4) symmetry does not extend to the masses and interactions of other hadrons (vector mesons, baryons, etc), nor to higher order in a^2. We show how it is possible that, for physical quark masses of O(a^2), the new SO(4) symmetry can be spontaneously broken, leading to a staggered analogue of the Aoki-phase of Wilson fermions. This does not, however, appear to happen for presently studied versions of the staggered action.Comment: 26 pages, 2 figures (using psfig). Version to appear in PRD (clarifications added to introduction and section 6; typos corrected; references updated

    One Spin Trace Formalism for BK B_K

    Get PDF
    It has been known for some time that there are two methods to calculate BK B_K with staggered fermions: one is the two spin trace formalism and the other is the one spin trace formalism. Until now, the two spin trace formalism has been exclusively used for weak matrix element calculations with staggered fermions. Here, the one spin trace formalism to calculate BK B_K with staggered fermions is explained. It is shown that the one spin trace operators require additional chiral partner operators in order to keep the continuum chiral behavior. The renormalization of the one spin trace operators is described and compared with the two spin trace formalism.Comment: 47 pages, latex, 4 figures are available on reques

    Exchange coupling in Eu monochalcogenides from first principles

    Full text link
    Using a density functional method with explicit account for strong Coulomb repulsion within the 4f shell, we calculate effective exchange parameters and the corresponding ordering temperatures of the (ferro)magnetic insulating Eu monochalcogenides (EuX; X=O,S,Se,Te) at ambient and elevated pressure conditions. Our results provide quantitative account of the many-fold increase of the Curie temperatures with applied pressure and reproduce well the enhancement of the tendency toward ferromagnetic ordering across the series from telluride to oxide, including the crossover from antiferromagnetic to ferromagnetic ordering under pressure in EuTe and EuSe. The first and second neighbor effective exchange are shown to follow different functional dependencies. Finally, model calculations indicate a significant contribution of virtual processes involving the unoccupied f states to the effective exchange.Comment: 4 pages, 6 figure

    Solar neutrino results in Super-Kamiokande-III

    Full text link
    The results of the third phase of the Super-Kamiokande solar neutrino measurement are presented and compared to the first and second phase results. With improved detector calibrations, a full detector simulation, and improved analysis methods, the systematic uncertainty on the total neutrino flux is estimated to be ?2.1%, which is about two thirds of the systematic uncertainty for the first phase of Super-Kamiokande. The observed 8B solar flux in the 5.0 to 20 MeV total electron energy region is 2.32+/-0.04 (stat.)+/-0.05 (sys.) *10^6 cm^-2sec^-1, in agreement with previous measurements. A combined oscillation analysis is carried out using SK-I, II, and III data, and the results are also combined with the results of other solar neutrino experiments. The best-fit oscillation parameters are obtained to be sin^2 {\theta}12 = 0.30+0.02-0.01(tan^2 {\theta}12 = 0.42+0.04 -0.02) and {\Delta}m2_21 = 6.2+1.1-1.9 *10^-5eV^2. Combined with KamLAND results, the best-fit oscillation parameters are found to be sin^2 {\theta}12 = 0.31+/-0.01(tan^2 {\theta}12 = 0.44+/-0.03) and {\Delta}m2_21 = 7.6?0.2*10^-5eV^2 . The 8B neutrino flux obtained from global solar neutrino experiments is 5.3+/-0.2(stat.+sys.)*10^6cm^-2s^-1, while the 8B flux becomes 5.1+/-0.1(stat.+sys.)*10^6cm^-2s^-1 by adding KamLAND result. In a three-flavor analysis combining all solar neutrino experiments, the upper limit of sin^2 {\theta}13 is 0.060 at 95% C.L.. After combination with KamLAND results, the upper limit of sin^2 {\theta}13 is found to be 0.059 at 95% C.L..Comment: 19 pages, 33 figures in the main text. The appendix section on errata is added in v

    The Kaon B-parameter with the Wilson Quark Action using Chiral Ward Identities

    Get PDF
    A lattice QCD calculation of the kaon BB parameter BKB_K is carried out with the Wilson quark action in the quenched approximation at β=6/g2=5.96.5\beta=6/g^2=5.9-6.5. The mixing problem of the Δs=2\Delta s=2 four-quark operators is solved non-perturbatively with full use of chiral Ward identities employing four external quarks with an equal off-shell momentum in the Landau gauge. This method, without invoking any effective theory, enables us to construct the weak four-quark operators exhibiting good chiral behavior. Our results for BKB_K with the non-perturbative mixing coefficients show small scaling violation beyond the lattice cut-off a12.5a^{-1}\sim 2.5 GeV. Our estimate concludes BK(NDR,2GeV)=0.69(7)B_K(NDR, 2 GeV)=0.69(7) at a1=2.74.3a^{-1}=2.7-4.3GeV, which agrees with the value obtained with the Kogut-Susskind quark action. For comparison we also calculate BKB_K with one-loop perturbative mixing coefficients. While this yields incorrect values at finite lattice spacing, a linear extrapolation to the continuum limit as a function of aa leads to a result consistent with those obtained with the Ward identity method.Comment: 42 pages, 22 Postscript figures, added a new reference[26
    corecore