1,543 research outputs found

    Attenuation of ischemic liver injury by prostaglandin E<inf>1</inf> analogue, misoprostol, and prostaglandin I<inf>2</inf> analogue, OP-41483

    Get PDF
    Background: Prostaglandin has been reported to have protective effects against liver injury. Use of this agent in clinical settings, however, is limited because of drugrelated side effects. This study investigated whether misoprostol, prostaglandin E1 analogue, and OP-41483, prostaglandin I2 analogue, which have fewer adverse effects with a longer half-life, attenuate ischemic liver damage. Study Design: Thirty beagle dogs underwent 2 hours of hepatic vascular exclusion using venovenous bypass. Misoprostol was administered intravenously for 30 minutes before ischemia and for 3 hours after reperfusion. OP-41483 was administered intraportally for 30 minutes before ischemia (2 μg/kg/min) and for 3 hours after reperfusion (0.5 μg/kg/min). Animals were divided into five groups: untreated control group (n = 10); high-dose misoprostol (total 100 μg/kg) group (MP-H, n = 5); middle-dose misoprostol (50 μg/kg) group (MP-M, n = 5); low-dose misoprostol (25 μg/kg) group (MP-L, n = 5); and OP-41483 group (OP, n = 5). Animal survival, hepatic tissue blood flow (HTBF), liver function, and histology were analyzed. Results: Two-week animal survival rates were 30% in control, 60% in MP-H, 100% in MP-M, 80% in MP-L, and 100% in OP. The treatments with prostaglandin analogues improved HTBF, and attenuated liver enzyme release, adenine nucleotrides degradation, and histologic abnormalities. In contrast to the MP-H animals that exhibited unstable cardiovascular systems, the MP- M, MP-L, and OP animals experienced only transient hypotension. Conclusions: These results indicate that misoprostol and OP-41483 prevent ischemic liver damage, although careful dose adjustment of misoprostol is required to obtain the best protection with minimal side effects

    Attenuation of ischemic liver injury by monoclonal anti-endothelin antibody, awETN40

    Get PDF
    Background: Enhanced production of endothelin-1 (ET1), vasoconstrictive 21 amino acids produced by endothelial cells during ischemia and after reperfusion of the liver, is known to cause sinusoidal constriction and microcirculatory disturbances, which lead to severe tissue damage. Using a 2- hour hepatic vascular exclusion model in dogs, we tested our hypothesis that neutralization of ET-1 by monoclonal anti-ET-1 and anti-ET-2 antibody (AwETN40) abates vascular dysfunction and ameliorates ischemia/reperfusion injury of the liver. Study Design: After skeletonization, the liver was made totally ischemic by cross-clamping the portal vein, the hepatic artery, and the vena cava (above and below the liver). Venovenous bypass was used to decompress splanchnic and inferior systemic congestion. AwETN40, 5 mg/kg, was administered intravenously 10 minutes before ischemia (treatment group, n = 5). Nontreated animals were used as controls (control group, n = 10). Animal survival, hepatic tissue blood flow, liver function tests; total bile acid, high-energy phosphate, ET-1 levels, and liver histopathology were studied. Results: Treatment with AwETN40 improved 2-week animal survival from 30% to 100%. Hepatic tissue blood flow after reperfusion was significantly higher in the treatment group. The treatment significantly attenuated liver enzyme release, total bile acid, and changes in adenine nucleotides. Immunoreactive ET-1 levels in the hepatic venous blood of the control group showed a significant increase and remained high for up to 24 hours after reperfusion. Histopathologic alterations were significantly lessened in the treatment group. Conclusions: These results indicate that ET-1 is involved in ischemia/reperfusion injury of the liver, which can be ameliorated by the monoclonal anti-ET-1 and antiET-2 antibody AwETN40

    Quantum entanglement in photosynthetic light harvesting complexes

    Full text link
    Light harvesting components of photosynthetic organisms are complex, coupled, many-body quantum systems, in which electronic coherence has recently been shown to survive for relatively long time scales despite the decohering effects of their environments. Within this context, we analyze entanglement in multi-chromophoric light harvesting complexes, and establish methods for quantification of entanglement by presenting necessary and sufficient conditions for entanglement and by deriving a measure of global entanglement. These methods are then applied to the Fenna-Matthews-Olson (FMO) protein to extract the initial state and temperature dependencies of entanglement. We show that while FMO in natural conditions largely contains bipartite entanglement between dimerized chromophores, a small amount of long-range and multipartite entanglement exists even at physiological temperatures. This constitutes the first rigorous quantification of entanglement in a biological system. Finally, we discuss the practical utilization of entanglement in densely packed molecular aggregates such as light harvesting complexes.Comment: 14 pages, 7 figures. Improved presentation, published versio

    Electronic Coherence Dephasing in Excitonic Molecular Complexes: Role of Markov and Secular Approximations

    Full text link
    We compare four different types of equations of motion for reduced density matrix of a system of molecular excitons interacting with thermodynamic bath. All four equations are of second order in the linear system-bath interaction Hamiltonian, with different approximations applied in their derivation. In particular we compare time-nonlocal equations obtained from so-called Nakajima-Zwanzig identity and the time-local equations resulting from the partial ordering prescription of the cummulant expansion. In each of these equations we alternatively apply secular approximation to decouple population and coherence dynamics from each other. We focus on the dynamics of intraband electronic coherences of the excitonic system which can be traced by coherent two-dimensional spectroscopy. We discuss the applicability of the four relaxation theories to simulations of population and coherence dynamics, and identify features of the two-dimensional coherent spectrum that allow us to distinguish time-nonlocal effects.Comment: 14 pages, 8 figure

    Multiscale photosynthetic exciton transfer

    Full text link
    Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest sustained coherent exciton transfer may be possible over distances large compared with nearest-neighbour (n-n) chromophore separations, at physiological temperatures, in a clustered network with small static disorder. This may support findings suggesting long-range coherence in algal chloroplasts, and provides a framework for engineering large chromophore or quantum dot high-temperature exciton transfer networks.Comment: 9 pages, 6 figures. A significantly updated version is now published online by Nature Physics (2012

    The Physical Basis for Long-lived Electronic Coherence in Photosynthetic Light Harvesting Systems

    Full text link
    The physical basis for observed long-lived electronic coherence in photosynthetic light-harvesting systems is identified using an analytically soluble model. Three physical features are found to be responsible for their long coherence lifetimes: i) the small energy gap between excitonic states, ii) the small ratio of the energy gap to the coupling between excitonic states, and iii) the fact that the molecular characteristics place the system in an effective low temperature regime, even at ambient conditions. Using this approach, we obtain decoherence times for a dimer model with FMO parameters of \approx 160 fs at 77 K and \approx 80 fs at 277 K. As such, significant oscillations are found to persist for 600 fs and 300 fs, respectively, in accord with the experiment and with previous computations. Similar good agreement is found for PC645 at room temperature, with oscillations persisting for 400 fs. The analytic expressions obtained provide direct insight into the parameter dependence of the decoherence time scales.Comment: 5 figures; J. Phys. Chem. Lett. (2011

    Exciton Dynamics in Photosynthetic Complexes: Excitation by Coherent and Incoherent Light

    Full text link
    In this paper we consider dynamics of a molecular system subjected to external pumping by a light source. Within a completely quantum mechanical treatment, we derive a general formula, which enables to asses effects of different light properties on the photo-induced dynamics of a molecular system. We show that once the properties of light are known in terms of certain two-point correlation function, the only information needed to reconstruct the system dynamics is the reduced evolution superoperator. The later quantity is in principle accessible through ultrafast non-linear spectroscopy. Considering a direct excitation of a small molecular antenna by incoherent light we find that excitation of coherences is possible due to overlap of homogeneous line shapes associated with different excitonic states. In Markov and secular approximations, the amount of coherence is significant only under fast relaxation, and both the populations and coherences between exciton states become static at long time. We also study the case when the excitation of a photosynthetic complex is mediated by a mesoscopic system. We find that such case can be treated by the same formalism with a special correlation function characterizing ultrafast fluctuations of the mesoscopic system. We discuss bacterial chlorosom as an example of such a mesoscopic mediator and propose that the properties of energy transferring chromophore-protein complexes might be specially tuned for the fluctuation properties of their associated antennae.Comment: 12 page

    Non-Markovian stochastic description of quantum transport in photosynthetic systems

    Full text link
    We analyze several aspects of the transport dynamics in the LH1-RC core of purple bacteria, which consists basically in a ring of antenna molecules that transport the energy into a target molecule, the reaction center, placed in the center of the ring. We show that the periodicity of the system plays an important role to explain the relevance of the initial state in the transport efficiency. This picture is modified, and the transport enhanced for any initial state, when considering that molecules have different energies, and when including their interaction with the environment. We study this last situation by using stochastic Schr{\"o}dinger equations, both for Markovian and non-Markovian type of interactions.Comment: 21 pages, 5 figure

    Rosai-Dorfman disease of the colon presented as small solitary polypoid lesion

    Get PDF
    Rosai-Dorfman disease (RDD) was formerly known as “sinus histiocytosis with massive lymphadenopathy”, and cases involving the gastrointestinal tract are rare. We present a case of pure extranodal RDD, resected as a polypoid lesion in colonoscopic study. The patient was a 62-year old woman with a history of sigmoidectomy for unexplained peritonitis. Microscopic study of the polypoid lesion showed the submucosal mass with histological and immunological features of RDD. The whole body computed tomography revealed neither lymphadenopathy nor tumor-like mass

    Protective role of nitric oxide in ischemia and reperfusion injury of the liver

    Get PDF
    Background: The suppressed production of nitric oxide (NO), associated with endothelial dysfunction, is thought to be a cause of ischemia and reperfusion injury of the liver. But findings of the salutary effects of NO enhancement on such injury have been conflicting. In this study, we tested our hypothesis that NO enhancement would attenuate ischemic liver injury. For this purpose, an NO precursor, L-arginine, and a novel NO donor, FK409, were applied to a 2-hour total hepatic vascular exclusion model in dogs. Study Design: L-arginine was administered IV at a dose of 100 mg/kg twice (n = 5), while 300 mg/kg twice of FK409 was infused continuously into the portal vein (n = 5). The drugs were given to the animals for 30 and 60 minutes before and after ischemia, respectively. Nontreated animals were used as the control (n = 10). Two-week survival, systemic and hepatic hemodynamics indices, liver function tests, energy metabolism, and histopathology were analyzed. Results: Both treatments comparably augmented hepatic tissue blood flow, decreased liver enzyme release, and increased high-energy phosphate restoration during the reperfusion period, all of which contributed to rescuing all of the treated animals from the 2-hour total hepatic ischemia. In contrast, ischemia caused 70% mortality in the control group. Histologically, structural abnormality and neutrophil infiltration were markedly attenuated by the treatments. Systemic hypotension was observed in the animals treated with FK409, however. Conclusions: Our data demonstrate that NO enhancement alleviates the liver injury caused by ischemia and reperfusion. The supplementation of L-arginine, rather than FK409, is considered more applicable to clinical use because of the absence of systemic adverse effects
    corecore