555 research outputs found

    Intracochlear schwannoma presenting as diffuse cochlear enhancement: diagnostic challenges of a rare cause of deafness

    Get PDF
    Intracochlear schwannoma is a rare, treatable, cause of unilateral hearing loss. Due to the small size, position, and variable clinical and imaging features, diagnosis presents a significant challenge and is often delayed. We present a case of a patient with an intracochlear schwannoma presenting as a diffuse enhancement of the cochlea, mimicking an infectious or inflammatory process. The absence of focal nodularity in this lesion on multiple high-resolution MRI examinations led to a delay of over 3 years from the patient’s initial presentation to surgical diagnosis. Clinical history and examination, imaging features, pathologic findings, and surgical management options are described

    Genotype‐phenotype analysis of LMNA‐related diseases predicts phenotype‐selective alterations in lamin phosphorylation

    Full text link
    Laminopathies are rare diseases associated with mutations in LMNA, which encodes nuclear lamin A/C. LMNA variants lead to diverse tissue‐specific phenotypes including cardiomyopathy, lipodystrophy, myopathy, neuropathy, progeria, bone/skin disorders, and overlap syndromes. The mechanisms underlying these heterogeneous phenotypes remain poorly understood, although post‐translational modifications, including phosphorylation, are postulated as regulators of lamin function. We catalogued all known lamin A/C human mutations and their associated phenotypes, and systematically examined the putative role of phosphorylation in laminopathies. In silico prediction of specific LMNA mutant‐driven changes to lamin A phosphorylation and protein structure was performed using machine learning methods. Some of the predictions we generated were validated via assessment of ectopically expressed wild‐type and mutant LMNA. Our findings indicate phenotype‐ and mutant‐specific alterations in lamin phosphorylation, and that some changes in phosphorylation may occur independently of predicted changes in lamin protein structure. Therefore, therapeutic targeting of phosphorylation in the context of laminopathies will likely require mutant‐ and kinase‐specific approaches.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155891/1/fsb220571.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155891/2/fsb220571_am.pd

    High-resolution mass models of dwarf galaxies from LITTLE THINGS

    Get PDF
    We present high-resolution rotation curves and mass models of 26 dwarf galaxies from LITTLE THINGS. LITTLE THINGS is a high-resolution Very Large Array HI survey for nearby dwarf galaxies in the local volume within 11 Mpc. The rotation curves of the sample galaxies derived in a homogeneous and consistent manner are combined with Spitzer archival 3.6 micron and ancillary optical U, B, and V images to construct mass models of the galaxies. We decompose the rotation curves in terms of the dynamical contributions by baryons and dark matter halos, and compare the latter with those of dwarf galaxies from THINGS as well as Lambda CDM SPH simulations in which the effect of baryonic feedback processes is included. Being generally consistent with THINGS and simulated dwarf galaxies, most of the LITTLE THINGS sample galaxies show a linear increase of the rotation curve in their inner regions, which gives shallower logarithmic inner slopes alpha of their dark matter density profiles. The mean value of the slopes of the 26 LITTLE THINGS dwarf galaxies is alpha =-0.32 +/- 0.24 which is in accordance with the previous results found for low surface brightness galaxies (alpha = -0.2 +/- 0.2) as well as the seven THINGS dwarf galaxies (alpha =-0.29 +/- 0.07). However, this significantly deviates from the cusp-like dark matter distribution predicted by dark-matter-only Lambda CDM simulations. Instead our results are more in line with the shallower slopes found in the Lambda CDM SPH simulations of dwarf galaxies in which the effect of baryonic feedback processes is included. In addition, we discuss the central dark matter distribution of DDO 210 whose stellar mass is relatively low in our sample to examine the scenario of inefficient supernova feedback in low mass dwarf galaxies predicted from recent Lambda SPH simulations of dwarf galaxies where central cusps still remain.Peer reviewe

    Nanofluidic transport governed by the liquid/vapour interface

    Get PDF
    Liquid/vapour interfaces govern the behaviour of a wide range of systems but remain poorly understood, leaving ample margin for the exploitation of intriguing functionalities for applications. Here, we systematically investigate the role of liquid/vapour interfaces in the transport of water across apposing liquid menisci in osmosis membranes comprising short hydrophobic nanopores that separate two fluid reservoirs. We show experimentally that mass transport is limited by molecular reflection from the liquid/vapour interface below a certain length scale, which depends on the transmission probability of water molecules across the nanopores and on the condensation probability of a water molecule incident on the liquid surface. This fundamental yet elusive condensation property of water is measured under near-equilibrium conditions and found to decrease from 0.36 ± 0.21 at 30 °C to 0.18 ± 0.09 at 60 °C. These findings define the regime in which liquid/vapour interfaces govern nanofluidic transport and have implications for understanding mass transport in nanofluidic devices, droplets and bubbles, biological components and porous media involving liquid/vapour interfaces.Center for Clean Water and Clean Energy at MIT and KFUPM (Project R10-CW-09
    corecore