9 research outputs found

    Purification and characterization of PAMP-12 (PAMP[9–20]) in porcine adrenal medulla as a major endogenous biologically active peptide

    Get PDF
    AbstractProadrenomedullin N-terminal 20 peptide (PAMP-20) is a potent hypotensive peptide processed from the adrenomedullin (AM) precursor. We developed a specific radioimmunoassay which recognizes the C-terminal region of PAMP-20. Using this radioimmunoassay, the distribution of immunoreactive (ir-) PAMP was determined in porcine tissues. High concentrations of ir-PAMP were observed in the adrenal medulla and in the atrium, and these values were comparable to the corresponding concentrations of ir-AM. The concentration of ir-PAMP was almost the same as that of ir-AM in the kidney, while ir-PAMP was significantly lower than ir-AM in the ventricle, lung, and aorta. Reversed-phase high performance liquid chromatography in each porcine tissue sample revealed that two major peaks of ir-PAMP existed: one emerged at a position identical to that of authentic porcine PAMP-20; the other unknown peak was eluted earlier. The unknown peptide was purified to homogeneity from porcine adrenal medulla, and its complete amino acid sequence was determined. This peptide was found to be PAMP[9–20] with a C-terminal amide structure, and was named PAMP-12. Intravenous injections of PAMP-12 in anesthetized rats showed a significant hypotensive effect in a dose-dependent fashion, and the effect was comparable to that of PAMP-20. These data indicate that PAMP-12, a major component of ir-PAMP, is processed from the AM precursor, as is PAMP-20, and may participate in cardiovascular control

    Trigonally-compressed octahedral geometry of hexaamminecobalt(III) complex cation in aqueous solution investigated from the electronic spectra

    No full text
    <p>Electronic spectra of hexaamminecobalt(III) complex cation in aqueous solution were analyzed to obtain spectral components. Subsequently, based on the spectral components, the coordination geometry around the cobalt(III) ion was investigated, using the reverse angular overlap model method. The result indicates that the geometry is a trigonally compressed octahedron with the polar angle of 57.9 ± 1.0° under <i>D</i><sub>3<i>d</i></sub> symmetry, where the polar angle is the angle between the trigonal axis and the Co–N bond. From this angle, the top and side N–Co–N bond angles are calculated as 94.4° and 85.6°, respectively. The density functional theory computation supported this trigonally compressed structure in aqueous solution.</p

    Β-Galactosidase-Catalyzed Fluorescent Reporter Labeling of Living Cells for Sensitive Detection of Cell Surface Antigens

    No full text
    The ability to detect cell surface proteins using fluorescent dye-labeled antibodies is crucial for the reliable identification of many cell types. However, the different types of cell surface proteins used to identify cells are currently limited in number because they need to be expressed at high levels to exceed background cellular autofluorescence, especially in the shorter wavelength region. Herein, we report on a new method (CLAMP: quinone methide-based catalyzed signal amplification) in which the fluorescence signal is amplified by an enzymatic reaction that strongly facilitates the detection of cell surface proteins on living cells. We used β-galactosidase as an amplification enzyme and designed a substrate for it, called MUGF, which contains a fluoromethyl group. Upon removal of the galactosyl group in MUGF by β-galactosidase labeling of the target cell surface proteins, the resulting quinone methide group-containing product was found to be both cell membrane permeable and reactive with intracellular nucleophiles, thereby providing fluorescent adducts. Using this method, we successfully detected several cell surface proteins including programmed death ligand 1 protein, which is difficult to detect using conventional fluorescent dye-labeled antibodies

    Development of small fluorescent probes for the analysis of autophagy kinetics

    No full text
    Summary: Autophagy is a dynamic process that degrades subcellular constituents, and its activity is measured by autophagic flux. The tandem proteins RFP-GFP-LC3 and GFP-LC3-RFP-LC3ΔG, which enable the visualization of autophagic vacuoles of different stages by differences in their fluorescent color, are useful tools to monitor autophagic flux, but they require plasmid transfection. In this study, we hence aimed to develop a new method to monitor autophagic flux using small cell-permeable fluorescent probes. We previously developed two green-fluorescent probes, DALGreen and DAPGreen, which detect autolysosomes and multistep autophagic vacuoles, respectively. We here developed a red-fluorescent autophagic probe, named DAPRed, which recognizes various autophagic vacuoles. By the combinatorial use of these green- and red-fluorescent probes, we were able to readily detect autophagic flux. Furthermore, these probes were useful not only for the visualization of canonical autophagy but also for alternative autophagy. DAPRed was also applicable for the detection of autophagy in living organisms

    Recurrent CCND3 mutations in MLL-rearranged acute myeloid leukemia

    Get PDF
    急性骨髄性白血病の新規遺伝子変異を発見 --乳がんの既存薬が治療に有効である可能性--. 京都大学プレスリリース. 2018-11-01.In acute myeloid leukemia (AML), MLL (KMT2A) rearrangements are among the most frequent chromosomal abnormalities; however, knowledge of the genetic landscape of MLL-rearranged AML is limited. In this study, we performed whole-exome sequencing (n = 9) and targeted sequencing (n = 56) of samples from pediatric MLL-rearranged AML patients enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 study. Additionally, we analyzed 105 pediatric t(8;21) AML samples and 30 adult MLL-rearranged AML samples. RNA-sequencing data from 31 patients published in a previous study were also reanalyzed. As a result, we identified 115 mutations in pediatric MLL-rearranged AML patients (2.1 mutations/patient), with mutations in signaling pathway genes being the most frequently detected (60.7%). Mutations in genes associated with epigenetic regulation (21.4%), transcription factors (16.1%), and the cohesin complex (8.9%) were also commonly detected. Novel CCND3 mutations were identified in 5 pediatric MLL-rearranged AML patients (8.9%) and 2 adult MLL-rearranged AML patients (3.3%). Recurrent mutations of CCND1 (n = 3, 2.9%) and CCND2 (n = 8, 7.6%) were found in pediatric t(8;21) AML patients, whereas no CCND3 mutations were found, suggesting that D-type cyclins exhibit a subtype-specific mutation pattern in AML. Treatment of MLL-rearranged AML cell lines with CDK4/6 inhibitors (abemaciclib and palbociclib) blocked G1 to S phase cell-cycle progression and impaired proliferation. Pediatric MLL-MLLT3–rearranged AML patients with coexisting mutations (n = 16) had significantly reduced relapse-free survival and overall survival compared with those without coexisting mutations (n = 9) (P = .048 and .046, respectively). These data provide insights into the genetics of MLL-rearranged AML and suggest therapeutic strategies
    corecore