12 research outputs found

    Role of RNA-Binding Proteins in MAPK Signal Transduction Pathway

    Get PDF
    Mitogen-activated protein kinases (MAPKs), which are found in all eukaryotes, are signal transducing enzymes playing a central role in diverse biological processes, such as cell proliferation, sexual differentiation, and apoptosis. The MAPK signaling pathway plays a key role in the regulation of gene expression through the phosphorylation of transcription factors. Recent studies have identified several RNA-binding proteins (RBPs) as regulators of MAPK signaling because these RBPs bind to the mRNAs encoding the components of the MAPK pathway and regulate the stability of their transcripts. Moreover, RBPs also serve as targets of MAPKs because MAPK phosphorylate and regulate the ability of RBPs to bind and stabilize target mRNAs, thus controlling various cellular functions. In this review, we present evidence for the significance of the MAPK signaling in the regulation of RBPs and their target mRNAs, which provides additional information about the regulatory mechanism underlying gene expression. We further present evidence for the clinical importance of the posttranscriptional regulation of mRNA stability and its implications for drug discovery

    The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies.

    Get PDF
    BACKGROUND: BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. RESULTS: The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. CONCLUSION: We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Detection of periodic patterns in microarray data reveals novel oscillating transcripts of biological rhythms in Ciona intestinalis

    Full text link
    A circadian rhythm is a roughly 24-h cycle in biological processes and physiological phenomena such as sleep, feeding, and photosynthesis for many organisms on Earth. The circadian patterns are coordinated by rhythmical gene expression of clock genes. Time-course transcriptomic analyses involving statistical methods have shown coordination of periodic gene expression in many organisms. Here we applied the cosine fitting method COSOPT to identify novel oscillating genes in microarray data for the chordate Ciona intestinalis. This organism showed rhythmic oxygen consumption in our previous study, but there were few homologous clock genes showing rhythmic mRNA expression. To understand circadian behavior at the transcriptomic level, we analyzed the 817 of 21,938 probes showing a 23- to 25-h period by means of COSOPT. Coupling the analysis of period detection with functional annotations indicated that previously unknown rhythmic mRNA expression might exist in C. intestinalis. In addition, we are releasing our implementation of COSOPT by means of R and C. All source code and supplementary information are available from https://github.com/mhiromi/cosopt

    Detection of periodic patterns in microarray data reveals novel oscillating transcripts of biological rhythms in Ciona intestinalis

    No full text
    A circadian rhythm is a roughly 24-h cycle in biological processes and physiological phenomena such as sleep, feeding, and photosynthesis for many organisms on Earth. The circadian patterns are coordinated by rhythmical gene expression of clock genes. Time-course transcriptomic analyses involving statistical methods have shown coordination of periodic gene expression in many organisms. Here we applied the cosine fitting method COSOPT to identify novel oscillating genes in microarray data for the chordate Ciona intestinalis. This organism showed rhythmic oxygen consumption in our previous study, but there were few homologous clock genes showing rhythmic mRNA expression. To understand circadian behavior at the transcriptomic level, we analyzed the 817 of 21,938 probes showing a 23- to 25-h period by means of COSOPT. Coupling the analysis of period detection with functional annotations indicated that previously unknown rhythmic mRNA expression might exist in C. intestinalis. In addition, we are releasing our implementation of COSOPT by means of R and C. All source code and supplementary information are available from https://github.com/mhiromi/cosopt

    Poor Nutritional Status during Recovery from Acute Myocardial Infarction in Patients without an Early Nutritional Intervention Predicts a Poor Prognosis: A Single-Center Retrospective Study

    No full text
    Whether malnutrition during the early phase of recovery from acute myocardial infarction (AMI) could be a predictor of mortality or morbidity has not been ascertained. We examined 289 AMI patients. All-cause mortality and composite endpoints (all-cause mortality, nonfatal stroke, nonfatal acute coronary syndrome, and hospitalization for acute decompensated heart failure) during the follow-up duration (median 39 months) were evaluated. There were 108 (37.8%) malnourished patients with GNRIs of less than 98 on arrival; however, malnourished patients significantly decreased to 91 (31.4%) during the convalescence period (p p p p = 0.03). The assessment of GNRI during the convalescence period is a useful risk predictor for patients with AMI. Nutritional guidance may improve the prognoses of patients with poor nutritional status

    Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks

    No full text
    Ticks are ectoparasitic arthropods that can transmit a variety of microorganisms to humans and animals during blood feeding, causing serious infectious disorders, including Lyme disease. Acaricides are pharmacologic agents that kill ticks. The emergence of acaricide-resistant ticks calls for alternative control strategies for ticks and tick-borne diseases. Many animals develop resistance to ticks after repeated infestations, but the nature of this acquired anti-tick immunity remains poorly understood. Here we investigated the cellular and molecular mechanisms underlying acquired resistance to Haemaphysalis longicornis ticks in mice and found that antibodies were required, as was IgFc receptor expression on basophils but not on mast cells. The infiltration of basophils at tick-feeding sites occurred during the second, but not the first, tick infestation. To assess the requirement for basophil infiltration to acquired tick resistance, mice expressing the human diphtheria toxin receptor under the control of the mast cell protease 8 (Mcpt8) promoter were generated. Diphtheria toxin administration to these mice selectively ablated basophils. Diphtheria toxin–mediated basophil depletion before the second tick infestation resulted in loss of acquired tick resistance. These data provide the first clear evidence, to our knowledge, that basophils play an essential and nonredundant role in antibody-mediated acquired immunity against ticks, which may suggest new strategies for controlling tick-borne diseases
    corecore