18 research outputs found

    Prediction of emergence period of overwintering Chironomid larvae (Diptera: Chironomidae) at lower reaches of the Kiso River, Central Japan.

    Get PDF
    Species composition and period of emergence were investigated for overwintering Chironomidae at the lower reaches of the Kiso River by rearing larvae to obtain fundamental information for drafting a plan to prevent outbreaks of nuisance midges. Adults of 9 species emerged from the substrate samples in February 2006. The four most abundant species, Stictochironomus akizukii, Hydrobaenus kondoi, Tanytarsus takahashii and Einfeldia dissidens, occupied 88.0% of the total abundance. Using effective accumulative temperature for emergence and in situ water temperatures, the in situ emergence periods of the overwintering generation in 2006 were predicted as until early March for H. kondoi, from the end of March to early May for S. akizukii and T. takahashii, and late April to mid-June for E. dissidens.Article衛生動物.58(3):183-190(2007)journal articl

    Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin

    Get PDF
    X線自由電子レーザーを用いて、光照射によるチャネルロドプシンの構造変化の過程を捉えることに成功. 京都大学プレスリリース. 2021-03-26.Channelrhodopsins (ChRs) are microbial light-gated ion channels utilized in optogenetics to control neural activity with light . Light absorption causes retinal chromophore isomerization and subsequent protein conformational changes visualized as optically distinguished intermediates, coupled with channel opening and closing. However, the detailed molecular events underlying channel gating remain unknown. We performed time-resolved serial femtosecond crystallographic analyses of ChR by using an X-ray free electron laser, which revealed conformational changes following photoactivation. The isomerized retinal adopts a twisted conformation and shifts toward the putative internal proton donor residues, consequently inducing an outward shift of TM3, as well as a local deformation in TM7. These early conformational changes in the pore-forming helices should be the triggers that lead to opening of the ion conducting pore

    Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology

    Get PDF
    Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N2O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity through production and release of nitrification inhibitors. The power of phytochemicals with BNI-function needs to be harnessed to control soil-nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative biological technologies designed for genetic mitigation are needed so that BNIenabled crop-livestock and cropping systems can rein in soil-nitrifier activity to help reduce greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less harmful to environment. This will reinforce the adaptation or mitigation impact of other climate-smart agriculture technologies

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015
    corecore