65 research outputs found

    A YAC contig in Xp21 containing the adrenal hypoplasia congenita and glycerol kinase deficiency genes

    Get PDF
    The gene loci for adrenal hypoplasia congenita (AHC) and glycerol kinase deficiency (GK) map in Xp21 distal to Duchenne muscular dystrophy (DMD), and proximal to DXS28 (C7), by analysis of patient deletions. We have constructed a yeast artificial chromosome (YAC) contig encompassing a 1.2 Mb region extending distally from DMD, and containing DXS708 (JC-1), the distal junction clone of a patient with GK and DMD. A pulsed-field gel electrophoresis map of the YAC contig identified 3 potential CpG islands. Whole YAC hybridization identified cosmids both for construction of cosmid contigs, and isolation of single copy probes. Thirteen new single copy probes and DXS28 and DXS708 were hybridized on a panel of patients; the deletion mapping indicates that the YAC contig contains both GK and at least part of AHC, and together with the physical map defines a GK critical region of 50-250 kb. In one AHC patient with a cytogenetically detectable deletion we used the new probes to characterize a complex double deletion. Non-overlapping deletions observed in other unrelated AHC patients indicate that the AHC gene is large, extending over at least 200-500 kb. This mapping provides the basis for the identification of the AHC and GK gene

    A YAC contig in Xp21 containing the adrenal hypoplasia congenita and glycerol kinase deficiency genes

    Full text link
    The gene loci for adrenal hypoplasia congenita (AHC) and glycerol kinase deficiency (GK) map in Xp21 distal to Duchenne muscular dystrophy (DMD), and proximal to DXS28 (C7), by analysis of patient deletions. We have constructed a yeast artificial chromosome (YAC) contig encompassing a 1.2 Mb region extending distally from DMD, and containing DXS708 (JC-1), the distal junction clone of a patient with GK and DMD. A pulsed-field gel electrophoresis map of the YAC contig identified 3 potential CpG islands. Whole YAC hybridization identified cosmids both for construction of cosmid contigs, and isolation of single copy probes. Thirteen new single copy probes and DXS28 and DXS708 were hybridized on a panel of patients; the deletion mapping indicates that the YAC contig contains both GK and at least part of AHC, and together with the physical map defines a GK critical region of 50-250 kb. In one AHC patient with a cytogenetically detectable deletion we used the new probes to characterize a complex double deletion. Non-overlapping deletions observed in other unrelated AHC patients indicate that the AHC gene is large, extending over at least 200-500 kb. This mapping provides the basis for the identification of the AHC and GK gene

    Positional cloning of an X;8 translocation (p22.13;q22.1) associated with multiple exostoses and autism

    No full text
    Autism is characterized by qualitative impairments in communication and reciprocal social interaction. About 3 in 10,000 in the general population suffer from this neurodevelopmental disorder. The majority of patients also manifest mental retardation and about 20-45% epilepsy. Multiple exostoses is the commonest form of all skeletal dysplasias, affecting 1 in 50,000 live births. The condition, characterized by cartilaginous protuberances at the ends of the diaphyses, affects the extremities causing skeletal deformities and short stature. Autism and multiple exostoses are considered to be inherited disorders, but the underlying biochemical defects of the disorders are unknown. Both of these conditions allow for survival but considerably diminish the quality of life. An X;8 translocation was identified in a female patient, ML, with autism and multiple exostoses. Her phenotypic manifestations are likely due to the chromosomal abnormality. A positional candidate cloning strategy was used to investigate the genes involved in the translocation. The translocation breakpoint was first isolated in Yeast Artificial Chromosomes (YACs), then in cosmid and plasmid clones. The translocation was reciprocal within a 5'-GGCA-3' sequence found on both X and 8 chromosomes without gain or loss of a single nucleotide. The translocation breakpoint on the X chromosome occurred in the first intron of the gastrin releasing peptide receptor (GRPR) gene and on chromosome 8 approximately 30 kb distal to the 3' end of the Syndecan-2 gene (SDC2), also known as human heparan sulfate proteoglycan or fibroglycan. Although the GRPR gene was shown to escape X-inactivation and the coding region of the SDC2 gene was not disrupted, a dosage effect of the GRPR gene and a position effect of the SDC2 gene may, however, have contributed to the phenotype observed in this patient. The orientation of these genes with respect to the translocation was incompatible with the formation of a fusion gene. The GRPR and SDC2 genes may provide insight into the biochemical nature of autism and multiple exostoses. Investigation of mutations in these two genes in unrelated patients with either autism or multiple exostoses as well as linkage and association studies are needed to validate them as candidate genes.</p

    Positional cloning of an X; 8 translocational (p22.12; q22.1) associated with multiple exostoses and autism

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D197134 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Positional cloning of an X;8 translocation (p22.13;q22.1) associated with multiple exostoses and autism

    No full text
    Autism is characterized by qualitative impairments in communication and reciprocal social interaction. About 3 in 10,000 in the general population suffer from this neurodevelopmental disorder. The majority of patients also manifest mental retardation and about 20-45% epilepsy. Multiple exostoses is the commonest form of all skeletal dysplasias, affecting 1 in 50,000 live births. The condition, characterized by cartilaginous protuberances at the ends of the diaphyses, affects the extremities causing skeletal deformities and short stature. Autism and multiple exostoses are considered to be inherited disorders, but the underlying biochemical defects of the disorders are unknown. Both of these conditions allow for survival but considerably diminish the quality of life. An X;8 translocation was identified in a female patient, ML, with autism and multiple exostoses. Her phenotypic manifestations are likely due to the chromosomal abnormality. A positional candidate cloning strategy was used to investigate the genes involved in the translocation. The translocation breakpoint was first isolated in Yeast Artificial Chromosomes (YACs), then in cosmid and plasmid clones. The translocation was reciprocal within a 5'-GGCA-3' sequence found on both X and 8 chromosomes without gain or loss of a single nucleotide. The translocation breakpoint on the X chromosome occurred in the first intron of the gastrin releasing peptide receptor (GRPR) gene and on chromosome 8 approximately 30 kb distal to the 3' end of the Syndecan-2 gene (SDC2), also known as human heparan sulfate proteoglycan or fibroglycan. Although the GRPR gene was shown to escape X-inactivation and the coding region of the SDC2 gene was not disrupted, a dosage effect of the GRPR gene and a position effect of the SDC2 gene may, however, have contributed to the phenotype observed in this patient. The orientation of these genes with respect to the translocation was incompatible with the formation of a fusion gene. The GRPR and SDC2 genes may provide insight into the biochemical nature of autism and multiple exostoses. Investigation of mutations in these two genes in unrelated patients with either autism or multiple exostoses as well as linkage and association studies are needed to validate them as candidate genes.</p

    Ice nucleation activity in various tissues of Rhododendron flower buds : their relevance to extraorgan freezing

    No full text
    Wintering flower buds of cold hardy Rhododendron japonicum cooled slowly to subfreezing temperatures are known to undergo extraorgan freezing, whose mechanisms remain obscure. We revisited this material to demonstrate why bud scales freeze first in spite of their lower water content, why florets remain deeply supercooled and how seasonal adaptive responses occur in regard to extraorgan freezing in flower buds. We determined ice nucleation activity (INA) of various flower bud tissues using a test tube-based assay. Irrespective of collection sites, outer and inner bud scales that function as ice sinks in extraorgan freezing had high INA levels whilst florets that remain supercooled and act as a water source lacked INA. The INA level of bud scales was not high in late August when flower bud formation was ending, but increased to reach the highest level in late October just before the first autumnal freeze. The results support the following hypothesis: the high INA in bud scales functions as the subfreezing sensor, ensuring the primary freezing in bud scales at warmer subzero temperatures, which likely allows the migration of floret water to the bud scales and accumulation of icicles within the bud scales. The low INA in the florets helps them remain unfrozen by deep supercooling. The INA in the bud scales was resistant to grinding and autoclaving at 121°C for 15 min, implying the intrinsic nature of the INA rather than of microbial origin, whilst the INA in stem bark was autoclaving-labile. Anti-nucleation activity (ANA) was implicated in the leachate of autoclaved bud scales, which suppresses the INA at millimolar levels of concentration and likely differs from the colligative effects of the solutes. The tissue INA levels likely contribute to the establishment of freezing behaviors by ensuring the order of freezing in the tissues: from the primary freeze to the last tissue remaining unfrozen

    Fluorescence in situ hybridisation of multiple probes on a single microscope slide.

    No full text
    We report a method to analyse multiple samples by fluorescence in situ hybridisation on a single glass microscope slide. Wells were formed in which independent hybridisation reactions could proceed by sealing a silicon rubber gasket to the slide. In the largest format tested, different probes were hybridised simultaneously by applying them directly from a 96-well microtitre dish which was inverted on a glass plate. This technique will increase the rate of analysis of multiple probes against a standard set of chromosomes and could also be used to analyse different karyotypes using a panel of probes such as single chromosome paints during a single operation. It should be useful for both chromosomal mapping projects and screening for chromosome abnormalities in clinical diagnostic laboratories
    • …
    corecore