10 research outputs found

    Magnesium-Nickel alloy for hydrogen storage produced by melt spinning followed by cold rolling

    Get PDF
    Severe plastic deformation routes (SPD) have been shown to be attractive for short time preparation of magnesium alloys for hydrogen storage, generating refined microstructures and interesting hydrogen storage properties when compared to the same materials processed by high-energy ball milling (HEBM), but with the benefit of higher air resistance. In this study, we present results of a new processing route for Mg alloys for hydrogen storage: rapid solidification followed by cold work. A Mg97Ni3 alloy was processed by melt spinning (MS) and by extensive cold rolling (CR). Submitting Mg97Ni3 ribbons between steel plates to cold rolling has shown to be a viable procedure, producing a thin cold welded foil, with little material waste. The as-processed material presents a high level of [002] fiber texture, a sub microcrystalline grain structure with a high density of defects, and also a fine dispersion of Mg2Ni nanoparticles. This refined microstructure allied to the developed texture resulted in enhanced activation and H-sorption kinetics properties.81381

    Chemistry and tensile properties of a recycled AA7050 via spray forming and ECAP/E

    No full text
    The aim of this work is to evaluate the conjugation of advanced processing techniques, such as spray forming, extrusion and ECAP as a processing route for reuse of machining chips generated during aircrafts manufacturing parts from AA7050-T7451 raw material plates supplied according to AMS 4050H¹. In this way, the sprayforming process was used for remelting, and billet production, followed by extrusion and ECAP. At the end of the process, an artificial aging according to AMS 2772E ² was conducted. An assessment of chemical composition, microstructure, and mechanical properties evolution throughout the process were performed. The results have showed that this proposed route may be used as a potential technological route for secondary aluminum source. For extrusion route for overaged condition, 144 MPa yield strength and 14% of elongation was attained. Beside this, at this stage of work, was verified that the hot extrusion process is more effective for reduction of porosity and microstructure development than ECAP, but on the other hand this one has reduced porosity dispersion significantly for the extrusion parameters adopted. The adopted homogenization schedule, followed by artificial aging after has resulted in excessive grain growth

    Severe Plastic Deformation and Additive Distribution in Mg-Fe to Improve Hydrogen Storage Properties

    No full text
    <div><p>Magnesium (Mg) is a light metal with relatively low cost. Its hydride (MgH2) is interesting for the safe hydrogen storage in solid state and has a high gravimetric capacity of 7.6%. Practical application of Mg is still hampered by high reaction temperatures and slow kinetics. In order to improve it and focus on more viable industrial processing conditions, Mg plates, with or without iron (Fe) addition, in the form of wires and powders, were submitted to severe plastic deformation (SPD) in air, starting with extensive cold rolling (ECR), followed by repetitive rolling (ARB). The samples were characterized by X-ray diffraction (XRD), optical microscopy (OM), scanning (SEM) and transmission electron microscopy (TEM). H2 storage properties were evaluated by differential scanning calorimetry (DSC) and Sievert's volumetric method. Mg processed by ECR+ARB resulted in larger grain refinement and densities of cracks than ECR. In addition, Fe in the form of continuous wires was fragmented and resulted in a better distribution of particles than powders, which agglomerated. Thus, finally, the synergetic effect of microstructural features and Fe as catalyst and its distribution improved activation, kinetics and hydrogen storage capacity.</p></div

    Magnesium-Nickel alloy for hydrogen storage produced by melt spinning followed by cold rolling

    No full text
    Severe plastic deformation routes (SPD) have been shown to be attractive for short time preparation of magnesium alloys for hydrogen storage, generating refined microstructures and interesting hydrogen storage properties when compared to the same materials processed by high-energy ball milling (HEBM), but with the benefit of higher air resistance. In this study, we present results of a new processing route for Mg alloys for hydrogen storage: rapid solidification followed by cold work. A Mg97Ni3 alloy was processed by melt spinning (MS) and by extensive cold rolling (CR). Submitting Mg97Ni3 ribbons between steel plates to cold rolling has shown to be a viable procedure, producing a thin cold welded foil, with little material waste. The as-processed material presents a high level of [002] fiber texture, a sub microcrystalline grain structure with a high density of defects, and also a fine dispersion of Mg2Ni nanoparticles. This refined microstructure allied to the developed texture resulted in enhanced activation and H-sorption kinetics properties

    High-yield direct synthesis of Mg 2FeH 6 from the elements by reactive milling

    No full text
    Magnesium complex hydrides as Mg 2FeH 6 are interesting phases for hydrogen storage in the solid state, mainly due to its high gravimetric and volumetric densities of H2. However, the synthesis of this hydride is not trivial because the intermetallic phase Mg2Fe does not exist and Mg and Fe are virtually immiscible under equilibrium conditions. In this study, we have systematically studied the influence of the most important processing parameters in reactive milling under hydrogen (RM) for Mg 2FeH 6 synthesis: milling time, ball-to-powder weight ratio (BPR), hydrogen pressure and type of mill. Low cost 2Mg-Fe mixtures were used as raw materials. An important control of the Mg 2FeH 6 direct synthesis by RM was attained. In optimized combinations of the processing parameters, very high proportions of the complex hydride could be obtained. © (2011) Trans Tech Publications
    corecore