16,934 research outputs found
Nuclear Force from Lattice QCD
The first lattice QCD result on the nuclear force (the NN potential) is
presented in the quenched level. The standard Wilson gauge action and the
standard Wilson quark action are employed on the lattice of the size 16^3\times
24 with the gauge coupling beta=5.7 and the hopping parameter kappa=0.1665. To
obtain the NN potential, we adopt a method recently proposed by CP-PACS
collaboration to study the pi pi scattering phase shift. It turns out that this
method provides the NN potentials which are faithful to those obtained in the
analysis of NN scattering data. By identifying the equal-time Bethe-Salpeter
wave function with the Schroedinger wave function for the two nucleon system,
the NN potential is reconstructed so that the wave function satisfies the
time-independent Schroedinger equation. In this report, we restrict ourselves
to the J^P=0^+ and I=1 channel, which enables us to pick up unambiguously the
``central'' NN potential V_{central}(r). The resulting potential is seen to
posses a clear repulsive core of about 500 MeV at short distance (r < 0.5 fm).
Although the attraction in the intermediate and long distance regions is still
missing in the present lattice set-up, our method is appeared to be quite
promising in reconstructing the NN potential with lattice QCD.Comment: A talk given at the XXIV International Symposium on Lattice Field
Theory (Lattice2006), Tucson, Arizona, USA, July 23-28, 2006, 3 figures,
7page
Nuclear Force from Monte Carlo Simulations of Lattice Quantum Chromodynamics
The nuclear force acting between protons and neutrons is studied in the Monte
Carlo simulations of the fundamental theory of the strong interaction, the
quantum chromodynamics defined on the hypercubic space-time lattice. After a
brief summary of the empirical nucleon-nucleon (NN) potentials which can fit
the NN scattering experiments in high precision, we outline the basic
formulation to derive the potential between the extended objects such as the
nucleons composed of quarks. The equal-time Bethe-Salpeter amplitude is a key
ingredient for defining the NN potential on the lattice. We show the results of
the numerical simulations on a lattice with the lattice spacing fm (lattice volume (4.4 fm)) in the quenched approximation.
The calculation was carried out using the massively parallel computer Blue
Gene/L at KEK. We found that the calculated NN potential at low energy has
basic features expected from the empirical NN potentials; attraction at long
and medium distances and the repulsive core at short distance. Various future
directions along this line of research are also summarized.Comment: 13 pages, 4 figures, version accepted for publication in
"Computational Science & Discovery" (IOP
Toward an understanding of short distance repulsions among baryons in QCD -- NBS wave functions and operator product expansion --
We report on our recent attempts to determine the short distance behaviors of
general 2-baryon and 3-baryon forces, which are defined from the
Nambu-Bethe-Salpeter(NBS) wave function, by using the operator product
expansion and a renormalization group analysis in QCD. We have found that the
repulsion at short distance increases as the number of valence quarks increases
or when the number of different flavors involved decreases. This global
tendency suggests a Pauli suppression principle among quark fields at work.Comment: 14 pages, add two exmples in sect.3.4, a version accepted for
Progress of Theoretical Physic
Momentum-resolved charge excitations in high-Tc cuprates studied by resonant inelastic x-ray scattering
We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of
high-Tc cuprates. Momentum-resolved charge excitations in the CuO2 plane are
examined from parent Mott insulators to carrier-doped superconductors. The Mott
gap excitation in undoped insulators is found to commonly show a larger
dispersion along the [pi,pi] direction than the [pi,0] direction. On the other
hand, the resonance condition displays material dependence. Upon hole doping,
the dispersion of the Mott gap excitation becomes weaker and an intraband
excitation appears as a continuum intensity below the gap at the same time. In
the case of electron doping, the Mott gap excitation is prominent at the zone
center and a dispersive intraband excitation is observed at finite momentum
transfer
Observation of Conduction Band Satellite of Ni Metal by 3p-3d Resonant Inverse Photoemission Study
Resonant inverse photoemission spectra of Ni metal have been obtained across
the Ni 3 absorption edge. The intensity of Ni 3 band just above Fermi
edge shows asymmetric Fano-like resonance. Satellite structures are found at
about 2.5 and 4.2 eV above Fermi edge, which show resonant enhancement at the
absorption edge. The satellite structures are due to a many-body configuration
interaction and confirms the existence of 3 configuration in the ground
state of Ni metal.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
Static quark free energies at finite temperature with two flavors of improved Wilson quarks
Polyakov loop correlations at finite temperature in two-flavor QCD are
studied in lattice simulations with the RG-improved gluon action and the
clover-improved Wilson quark action. From the simulations on a
lattice, we extract the free energies, the effective running coupling and the Debye screening mass for various color channels of
heavy quark--quark and quark--anti-quark pairs above the critical temperature.
The free energies are well approximated by the screened Coulomb form with the
appropriate Casimir factors. The magnitude and the temperature dependence of
the Debye mass are compared to those of the next-to-leading order thermal
perturbation theory and to a phenomenological formula given in terms of . Also we made a comparison between our results with the Wilson quark
and those with the staggered quark previously reported.Comment: 7 pages, 9 figures, talk given at Lattice 2006 (high temperature and
density
Finite temperature phase transition of two-flavor QCD with an improved Wilson quark action
We study the phase structure of QCD at finite temperatures with two flavors
of dynamical quarks on a lattice with the size , using a renormalization group improved gauge action and a clover improved
Wilson quark action. The simulations are made along the lines of constant
physics determined in terms of at zero-temperature. We
show preliminary results for the spatial string tension in the high temperature
phase.Comment: 7 pages, 7 figures, talk presented at Lattice 2006 (high temperature
and density
- …