25 research outputs found

    Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    Get PDF
    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE).JSPS KAKENHI for Challenging Exploratory Research/2656026

    System Design of an Autonomous Underwater Robot “DaryaBird”

    Get PDF
    Various kinds of robots have been developed parallel with the progress of computers and information processing technology, and the operations in the extreme environments, such as disaster areas, space and ocean, are getting one of the practical solutions for those hazardous missions. The underwater robots are one of the extreme environment robots and expected as one of solutions for underwater activities i.e., maintenance of underwater structures, observations, scientific research, where research area is getting wide and deep and also underwater structures are getting large-scale and deep-depth. Their efficiencies have been investigated during recent decades and are proven by ocean experiments. However, the robotic system including the support vessels is still big scale, and not so easy to handle by a few researchers. In this paper, we describe the design of an underwater robot “DaryaBird” developed aiming at handy, small underwater robots which can be operated by a few researchers. In addition, experimental results and mission strategies for AUVC 2010 are reported.AUVSI & ONR\u27s 13th AUVSI 2010 : Association for Unmanned Vehicle Systems International (AUVSI) North America 2010, Aug 24-27, 2010, Denver, CO., US

    Brown adipose tissue dysfunction promotes heart failure via a trimethylamine N-oxide-dependent mechanism.

    Get PDF
    Low body temperature predicts a poor outcome in patients with heart failure, but the underlying pathological mechanisms and implications are largely unknown. Brown adipose tissue (BAT) was initially characterised as a thermogenic organ, and recent studies have suggested it plays a crucial role in maintaining systemic metabolic health. While these reports suggest a potential link between BAT and heart failure, the potential role of BAT dysfunction in heart failure has not been investigated. Here, we demonstrate that alteration of BAT function contributes to development of heart failure through disorientation in choline metabolism. Thoracic aortic constriction (TAC) or myocardial infarction (MI) reduced the thermogenic capacity of BAT in mice, leading to significant reduction of body temperature with cold exposure. BAT became hypoxic with TAC or MI, and hypoxic stress induced apoptosis of brown adipocytes. Enhancement of BAT function improved thermogenesis and cardiac function in TAC mice. Conversely, systolic function was impaired in a mouse model of genetic BAT dysfunction, in association with a low survival rate after TAC. Metabolomic analysis showed that reduced BAT thermogenesis was associated with elevation of plasma trimethylamine N-oxide (TMAO) levels. Administration of TMAO to mice led to significant reduction of phosphocreatine and ATP levels in cardiac tissue via suppression of mitochondrial complex IV activity. Genetic or pharmacological inhibition of flavin-containing monooxygenase reduced the plasma TMAO level in mice, and improved cardiac dysfunction in animals with left ventricular pressure overload. In patients with dilated cardiomyopathy, body temperature was low along with elevation of plasma choline and TMAO levels. These results suggest that maintenance of BAT homeostasis and reducing TMAO production could be potential next-generation therapies for heart failure.We thank Kaori Yoshida, Keiko Uchiyama, Satomi Kawai, Naomi Hatanaka, Yoko Sawaguchi, Runa Washio, Takako Ichihashi, Nanako Koike, Keiko Uchiyama, Masaaki Nameta (Niigata University), Kaori Igarashi, Kaori Saitoh, Keiko Endo, Hiroko Maki, Ayano Ueno, Maki Ohishi, Sanae Yamanaka, Noriko Kagata (Keio University) for their excellent technical assistance, C. Ronald Kahn (Joslin Diabetes Center and Harvard Medical School) for providing the BAT cell line, Evan Rosen (Harvard Medical School) for providing us Ucp-Cre mice, Kosuke Morikawa (Kyoto University), Tomitake Tsukihara (University of Hyogo) and Shinya Yoshikawa (University of Hyogo) for their professional opinions and suggestions. Tis work was supported by a Grant-in-Aid for Scientifc Research (A) (20H00533) from MEXT, AMED under Grant Numbers JP20ek0210114, and AMED-CREST under Grant Number JP20gm1110012, and Moonshot Research and Development Program (21zf0127003s0201), MEXT Supported Program for the Strategic Research Foundation at Private Universities Japan, Private University Research Branding Project, and Leading Initiative for Excellent Young Researchers, and grants from the Takeda Medical Research Foundation, the Vehicle Racing Commemorative Foundation, Ono Medical Research Foundation, and the Suzuken Memorial Foundation (to T.M.). Support was also provided by a Grants-in-Aid for Young Scientists (Start-up) (26893080), and grants from the Uehara Memorial Foundation, Kowa Life Science Foundation, Manpei Suzuki Diabetes Foundation, SENSHIN Medical Research Foundation, ONO Medical Research Foundation, Tsukada Grant for Niigata University Medical Research, Te Nakajima Foundation, SUZUKEN memorial foundation, HOKUTO Corporation, Mochida Memorial Foundation for Medical & Pharmaceutical Research, Grants-in-Aid for Encouragement of Young Scientists (A) (16H06244), Daiichi Sankyo Foundation of Life Science, AMED Project for Elucidating and Controlling Mechanisms of Aging and Longevity under Grant Number JP17gm5010002, JP18gm5010002, JP19gm5010002, JP20gm5010002, JP21gm5010002, Astellas Foundation for Research on Metabolic Disorders, Research grant from Naito Foundation, Te Japan Geriatrics Society (to I.S.); by a Grant-in-Aid for Scientifc Research (C) (19K08974), Yujin Memorial Grant, Sakakibara Memorial Research Grant from Te Japan Research Promotion Society for Cardiovascular Diseases, TERUMO Life Science Foundation, Kanae Foundation (to Y.Y.), JST ERATO (JPMJER1902), AMED-CREST (JP20gm1010009), the Takeda Science Foundation, the Food Science Institute Foundation (to S.F.), and by a grant from Bourbon (to T.M., I.S. and Y.Y.).S

    A novel single-stranded DNA-specific 3′–5′ exonuclease, Thermus thermophilus exonuclease I, is involved in several DNA repair pathways

    Get PDF
    Single-stranded DNA (ssDNA)-specific exonucleases (ssExos) are expected to be involved in a variety of DNA repair pathways corresponding to their cleavage polarities; however, the relationship between the cleavage polarity and the respective DNA repair pathways is only partially understood. To understand the cellular function of ssExos in DNA repair better, genes encoding ssExos were disrupted in Thermus thermophilus HB8 that seems to have only a single set of 5′–3′ and 3′–5′ ssExos unlike other model organisms. Disruption of the tthb178 gene, which was expected to encode a 3′–5′ ssExo, resulted in significant increase in the sensitivity to H2O2 and frequency of the spontaneous mutation rate, but scarcely affected the sensitivity to ultraviolet (UV) irradiation. In contrast, disruption of the recJ gene, which encodes a 5′–3′ ssExo, showed little effect on the sensitivity to H2O2, but caused increased sensitivity to UV irradiation. In vitro characterization revealed that TTHB178 possessed 3′–5′ ssExo activity that degraded ssDNAs containing deaminated and methylated bases, but not those containing oxidized bases or abasic sites. Consequently, we concluded that TTHB178 is a novel 3′–5′ ssExo that functions in various DNA repair systems in cooperation with or independently of RecJ. We named TTHB178 as T. thermophilus exonuclease I
    corecore