13 research outputs found

    Tissue-specific differentiation of colonic macrophages requires TGFβ receptor-mediated signaling

    Get PDF
    Intestinal macrophages (mφ) form one of the largest populations of mφ in the body and are vital for the maintenance of gut homeostasis. They have several unique properties and are derived from local differentiation of classical Ly6Chi monocytes, but the factors driving this tissue-specific process are not understood. Here we have used global transcriptomic analysis to identify a unique homeostatic signature of mature colonic mφ that is acquired as they differentiate in the mucosa. By comparing the analogous monocyte differentiation process found in the dermis, we identify TGFβ as an indispensable part of monocyte differentiation in the intestine and show that it enables mφ to adapt precisely to the requirements of their environment. Importantly, TGFβR signaling on mφ has a crucial role in regulating the accumulation of monocytes in the mucosa, via mechanisms that are distinct from those used by IL10

    近世の流通システムと産業組織:宿駅と酒造業の経済的機能に関する考察

    Get PDF

    Dendritic cell-mediated NK cell activation is controlled by Jagged2–Notch interaction

    No full text
    Natural killer (NK) cells regulate various immune responses by exerting cytotoxic activity or secreting cytokines. The interaction of NK cells with dendritic cells (DC) contributes to NK cell-mediated antitumor or antimicrobial responses. However, the cellular and molecular mechanisms for controlling this interaction are largely unknown. Here, we show an involvement of Jagged2–Notch interaction in augmenting NK cell cytotoxicity mediated by DC. Enforced expression of Jagged2 on A20 cells (Jag2-A20 cells) suppressed their growth in vivo, which was abrogated by depleting NK cells. Moreover, Jag2-A20 cells exerted a suppression on the growth of nonmanipulated A20 cells in SCID mice in an NK-dependent manner. Consistently, coinoculation of A20 cells with DC overexpressing Jagged2 (Jag2-DC) suppressed the growth of A20 cells in mice. Stimulation of NK cells with Jagged2 directly enhanced their cytotoxicity, IFN-γ production, and proliferation. Ligation of Notch2 on NK cells enhanced their cytotoxic activity, and Jag2-DC or CpG-treated DC-mediated NK cell cytotoxicity was suppressed by a γ-secretase inhibitor. These results indicate that the Jagged2–Notch axis plays a crucial role in DC-mediated NK cell cytotoxicity. Furthermore, manipulation of this interaction may provide an approach to induce potent tumor immunity or to inhibit certain autoimmune diseases caused by NK cell activation

    Tailoring the surface chemistry of activated carbon cloth by electrochemical methods

    Full text link
    This paper presents a systematic study of the effect of the electrochemical treatment (galvanostatic electrolysis in a filter-press electrochemical cell) on the surface chemistry and porous texture of commercial activated carbon cloth. The same treatments have been conducted over a granular activated carbon in order to clarify the effect of morphology. The influence of different electrochemical variables, such as the electrode polarity (anodic or cathodic), the applied current (between 0.2 and 1.0 A) and the type of electrolyte (HNO3 and NaCl) have also been analyzed. The anodic treatment of both activated carbons causes an increase in the amount of surface oxygen groups, whereas the cathodic treatment does not produce any relevant modification of the surface chemistry. The HNO3 electrolyte produced a lower generation of oxygen groups than the NaCl one, but differences in the achieved distribution of surface groups can be benefitial to selectively tune the surface chemistry. The porous texture seems to be unaltered after the electro-oxidation treatment. The validity of this method to introduce surface oxygen groups with a pseudocapacitive behavior has been corroborated by cyclic voltammetry. As a conclusion, the electrochemical treatment can be easily implemented to selectively and quantitatively modify the surface chemistry of activated carbons with different shapes and morphologies.The authors thank the MINECO and FEDER for financial support (MAT2010-15273 project). R.R.R. gratefully acknowledges funding from MINECO through "Juan de la Cierva" program (JCI-2012-12664)Tabti, Z.; Ruiz-Rosas, R.; Quijada Tomás, C.; Cazorla-Amorós, D.; Morallón, E. (2014). Tailoring the surface chemistry of activated carbon cloth by electrochemical methods. ACS Applied Materials and Interfaces. 6:11682-11691. https://doi.org/10.1021/am502475vS1168211691
    corecore