199 research outputs found

    On the Discrepancy of pp, pbar p Total Cross Sections at sqrt s = 1.8TeV

    Full text link
    Based on the previous approach, we have investigated a possibility to resolve the discrepancy between the E710, E811 and CDF at sqrt s =1.8TeV, using the experimental data of the pp, pbar p total cross sections sigma tot(+) and rho(+)$ ratio up to the SPS experiments (sqrt s = 0.9TeV) as inputs. We predict sigma tot(pbar p) and rho(pbar p) at the Tevatron energy(sqrt s=1.8TeV) as sigma tot(pbar p)=75.9+- 1.0mb, rho(pbar p)=0.136+- 0.005. It turns out that only the data of E710 is consistent with the prediction in the one standard deviation. So we can conclude that E710 is preferable but we can exclude neither CDF nor E811 results.Comment: 10 pages, 3 figures, uses ptptex.st

    Three-dimensional localization and mapping for mobile robot in disaster environments

    Get PDF
    To relieve damages of earthquake disaster, &#34;The Special Project for Earthquake Disaster Mitigation in Urban Areas&#34; have been kicked off in Japan. Our research group is a part of the sub-project &#34;modeling of disaster environment for search and rescue&#34; since 2002. In this project, our group aims to develop a three-dimensional mapping's algorithm that is installed in a mobile robot to search victims in a collapsed building. To realize this mission, it is important to map environment information, and also the mapping requires localization simultaneously. (This is called &#34;SLAM problem&#34;.) In this research, we use three-dimensional map by laser range finder, and we also estimate its location in a global map using correlation technique. In this paper, we introduce our localization and mapping method, and we report a result of preparatory experiment for localization. </p

    Cell-based experimental evidence to the anti-COVID-19 potential of Ashwagandha and honeybee propolis ingredients

    Get PDF
    Background: The COVID-19 pandemic emerged in December 2019 by a novel strain of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has led to new endeavours in repurposing of existing drugs, anti-COVID-19 vaccine and drug development. Natural products, due to their general safety and wider availability, have attracted research and public attention. In this study, we report anti-COVID potential of compounds from honeybee propolis and Ayurvedic herb, Ashwagandha. Effect of active ingredients was studied on human cell surface receptors (ACE-2:Angiotensin Converting Enzyme-2/Spike protein and TMPRSS2:Transmembrane Protease Serine 2), critical for virus infection and virus main protease (Mpro, essential for virus replication), through molecular simulations and in vitro experiments. Methods: Structure-based computational analyses were performed to predict the effect of honeybee propolis (CAPE: Caffeic Acid Phenethyl Ester and ARC: Artepillin C), and Ashwagandha (Withanolides) ingredients on virus-host cell surface receptors. Cell-based assays were used to investigate the effect of these compounds on the expression level of the target proteins and virus replication. Results: Ashwagandha-derived nine withanolides were tested in silico for their potential to target and inhibit (i) ACE-2 and TMPRSS2 receptors (ii) viral main protease Mpro. We found that most withanolides possess capacity to bind to ACE-2, TMPRSS2 and Mpro . On the other hand, CAPE and ARC showed stable interactions at the active site of ACE2 and Mpro . ARC, but not CAPE, showed stable interaction with TMPRSS2. Human cells treated with withanolides, CAPE or ARC showed downregulation of both the receptors. Furthermore, celland PCR-based SARS-CoV-2 replication assays endorsed their antiviral activity. Conclusion: The findings suggest that the Ashwagandha-withanolides and honeybee propolis-derived compounds, CAPE, and ARC, could be helpful in the reduction of viral replication/infection, and hence warrant further experimental and clinical attention

    Renal impairment with sublethal tubular cell injury in a chronic liver disease mouse model

    Get PDF
    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms of sublethal tubular cell injury

    High Dietary Kuding Tea Extract Supplementation Induces Hepatic Xenobiotic-Metabolizing Enzymes-A 6-Week Feeding Study in Mice

    Get PDF
    Kuding tea (KT) is a traditional Chinese beverage rich in plant bioactives that may exhibit various health benefits. However, little is known about the safety of KT extract (KTE) when consumed long term at high doses as a dietary supplement. Therefore, in this study, we investigated aspects of the safety of KTE. Male C57BL/6 mice were fed a high-fat, high-fructose, Western-type diet (control) supplemented with either 12.88% γ-cyclodextrin (γCD), 7.12% KTE (comprising 0.15% ursolic acid, UA) encapsulated in 12.88% γCD (KTE-γCD), or 0.15% UA over a 6-week experimental period. The dietary treatments did not affect food intake, body weight or body composition. However, treatment with KTE-γCD, but not γCD and UA, increased liver weight and hepatic fat accumulation, which was accompanied by increased hepatic PPARγ and CD36 mRNA levels. KTE-γCD treatment elevated plasma cholesterol and CYP7A1 mRNA and protein levels compared to those in control mice. KTE-γCD substantially increased the mRNA and protein levels of hepatic CYP3A and GSTA1, which are central to the detoxification of drugs and xenobiotics. Furthermore, we observed a moderate elevation in hepatic CYP3A (5-fold change) and GSTA1 (1.7-fold change) mRNA levels in UA-fed mice. In vitro data collected in HepG2 cells indicated a dose-dependent increase in hepatic cytotoxicity in response to KTE treatment, which may have been partly mediated by UA. Overall, the present data may contribute to the safety assessment of KTE and suggest that KTE encapsulated in γCD affects liver fat storage and the hepatic phase I and phase II responses in mice

    Total Hadronic Cross Sections and \pi^\mp \pi^+ Scattering

    Full text link
    Recent measurements of the inelastic and total proton-proton cross section at the LHC, and at cosmic ray energies by the Auger experiment, have quantitatively confirmed fits to lower energy data constrained by the assumption that the proton is asymptotically a black disk of gluons. We show that data on \bar p(p)p,\pi^\mp p, and K^\mp p forward scattering support the related expectation that the asymptotic behavior of all cross sections is flavor independent. By using the most recent measurements from ATLAS, CMS, TOTEM and Auger, we predict \sigma^{pp}_{\rm tot} (\sqrt s=8 {\rm TeV})=100.6 \pm 2.9 mb and \sigma^{pp}_{\rm tot} (\sqrt s=14 {\rm TeV})=110.8 \pm 3.5 mb, as well as refine the total cross section \sigma^{pp}_{\rm tot} (\sqrt s=57 {\rm TeV})=139.6 \pm 5.4 mb. Our analysis also predicts the total \pi^\mp \pi^+ cross sections as a function of \sqrt s.Comment: Final version to be published in PRD (2012
    corecore