7,561 research outputs found

    Mass Uncertainties of f0(600) and f0(1370) and their Effects on Determination of the Quark and Glueball Admixtures of the I=0 Scalar Mesons

    Get PDF
    Within a nonlinear chiral Lagrangian framework the correlations between the quark and glueball admixtures of the isosinglet scalar mesons below 2 GeV and the current large uncertainties on the mass of the f0(600) and the f0(1370) are studied. The framework is formulated in terms of two scalar meson nonets (a two-quark nonet and a four-quark nonet) together with a scalar glueball. It is shown that while some properties of these states are sensitive to the mass of f0(600) and f0(1370), several relatively robust conclusions can be made: The f0(600), the f0(980), and the f0(1370) are admixtures of two and four quark components, with f0(600) being dominantly a non-strange four-quark state, and f0(980) and f0(1370) having a dominant two-quark component. Similarly, the f0(1500) and the f0(1710) have considerable two and four quark admixtures, but in addition have a large glueball component. For each state, a detailed analysis providing the numerical estimates of all components is given. It is also shown that this framework clearly favors the experimental values: m[f0(600)] < 700 MeV and m[f0(1370)] = 1300-1450 MeV. Moreover, an overall fit to the available data shows a reciprocal substructure for the f0(600) and the f0(1370), and a linear correlation between their masses of the form m [f0(1370)] = 0.29 m[f0(600)] + 1.22 GeV. The scalar glueball mass of 1.5-1.7 GeV is found in this analysis.Comment: placement of figures inside text improved. Content unchange

    Alternative Large Nc Schemes and Chiral Dynamics

    Get PDF
    We compare the dependences on the number of colors of the leading pion pion scattering amplitudes using the single index quark field and two index quark fields. These are seen to have different relationships to the scattering amplitudes suggested by chiral dynamics which can explain the long puzzling pion pion s wave scattering up to about 1 GeV. This may be interesting for getting a better understanding of the large Nc approach as well as for application to recently proposed technicolor models.Comment: RevTex, two-columns, 6 page

    On the nature of light scalar mesons from their large NcN_c behavior

    Get PDF
    We show how to obtain information about the states of an effective field theory in terms of the underlying fundamental theory. In particular we analyze the spectroscopic nature of meson resonances from the meson-meson scattering amplitudes of the QCD low energy effective theory, combined with the expansion in the large number of colors. The vectors follow a qqbar behavior, whereas the sigma, kappa and f_0(980) scalars disappear for large N_c, in support of a qqqbarqbar-like nature. The a_0 shows a similar pattern, but the uncertainties are large enough to accommodate both interpretations.Comment: 4 pages. Slightly shortened version to appear in Phys. Rev. Lett. Two typos correcte

    Estimates of isospin breaking contributions to baryon masses

    Full text link
    We estimate the isospin breaking contributions to the baryon masses which we analyzed recently using a loop expansion in the heavy baryon approximation to chiral effective field theory. To one loop, the isospin breaking corrections come from the effects of the d,ud, u quark mass difference, the Coulomb and magnetic moment interactions, and effective point interactions attributable to color-magnetic effects. The addition of the first meson loop corrections introduces new structure. We estimate the resulting low-energy, long-range contributions to the mass splittings by regularizing the loop integrals using connections to dynamical models for finite-size baryons. We find that the resulting contributions to the isospin breaking corrections are of the right general size, have the correct sign pattern, and agree with the experimental values within the margin of error.Comment: 15 pages, 5 figures; changed title and conten

    Cosmological Parameter Estimation from SN Ia data: a Model-Independent Approach

    Full text link
    We perform a model independent reconstruction of the cosmic expansion rate based on type Ia supernova data. Using the Union 2.1 data set, we show that the Hubble parameter behaviour allowed by the data without making any hypothesis about cosmological model or underlying gravity theory is consistent with a flat LCDM universe having H_0 = 70.43 +- 0.33 and Omega_m=0.297 +- 0.020, weakly dependent on the choice of initial scatter matrix. This is in closer agreement with the recently released Planck results (H_0 = 67.3 +- 1.2, Omega_m = 0.314 +- 0.020) than other standard analyses based on type Ia supernova data. We argue this might be an indication that, in order to tackle subtle deviations from the standard cosmological model present in type Ia supernova data, it is mandatory to go beyond parametrized approaches

    Quasi-classical determination of the in-plane magnetic field phase diagram of superconducting Sr_2RuO_4

    Full text link
    We have carried out a determination of the magnetic-field-temperature (H-T) phase diagram for realistic models of the high field superconducting state of tetragonal Sr_2RuO_4 with fields oriented in the basal plane. This is done by a variational solution of the Eilenberger equations.This has been carried for spin-triplet gap functions with a {\bf d}-vector along the c-axis (the chiral p-wave state) and with a {\bf d}-vector that can rotate easily in the basal plane. We find that, using gap functions that arise from a combination of nearest and next nearest neighbor interactions, the upper critical field can be approximately isotropic as the field is rotated in the basal plane. For the chiral {\bf d}-vector, we find that this theory generically predicts an additional phase transition in the vortex state. For a narrow range of parameters, the chiral {\bf d}-vector gives rise to a tetracritical point in the H-T phase diagram. When this tetracritical point exists, the resulting phase diagram closely resembles the experimentally measured phase diagram for which two transitions are only observed in the high field regime. For the freely rotating in-plane {\bf d}-vector, we also find that additional phase transition exists in the vortex phase. However, this phase transition disappears as the in-plane {\bf d}-vector becomes weakly pinned along certain directions in the basal plane.Comment: 12 pages, 8 figure

    Metal-nonmetal transition in LixCoO2 thin film and thermopower enhancement at high Li concentration

    Full text link
    We investigate the transport properties of LixCoO2 thin films whose resistivities are nearly an order of magnitude lower than those of the bulk polycrystals. A metal-nonmetal transition occurs at ~0.8 in a biphasic domain, and the Seebeck coefficient (S) is drastically increased at ~140 K (= T*) with increasing the Li concentration to show a peak of magnitude ~120 \muV/K in the S-T curve of x = 0.87. We show that T* corresponds to a crossover temperature in the conduction, most likely reflecting the correlation-induced temperature dependence in the low-energy excitations

    Effect of in-plane line defects on field-tuned superconductor-insulator transition behavior in homogeneous thin film

    Full text link
    Field-tuned superconductor-insulator transition (FSIT) behavior in 2D isotropic and homogeneous thin films is usually accompanied by a nonvanishing critical resistance at low TT. It is shown that, in a 2D film including line defects paralle to each other but with random positions perpendicular to them, the (apparent) critical resistance in low TT limit vanishes, as in the 1D quantum superconducting (SC) transition, under a current parallel to the line defects. This 1D-like critical resistive behavior is more clearly seen in systems with weaker point disorder and may be useful in clarifying whether the true origin of FSIT behavior in the parent superconductor is the glass fluctuation or the quantum SC fluctuation. As a by-product of the present calculation, it is also pointed out that, in 2D films with line-like defects with a long but {\it finite} correlation length parallel to the lines, a quantum metallic behavior intervening the insulating and SC ones appears in the resistivity curves.Comment: 16 pages, 14 figure
    • …
    corecore