We estimate the isospin breaking contributions to the baryon masses which we
analyzed recently using a loop expansion in the heavy baryon approximation to
chiral effective field theory. To one loop, the isospin breaking corrections
come from the effects of the d,u quark mass difference, the Coulomb and
magnetic moment interactions, and effective point interactions attributable to
color-magnetic effects. The addition of the first meson loop corrections
introduces new structure. We estimate the resulting low-energy, long-range
contributions to the mass splittings by regularizing the loop integrals using
connections to dynamical models for finite-size baryons. We find that the
resulting contributions to the isospin breaking corrections are of the right
general size, have the correct sign pattern, and agree with the experimental
values within the margin of error.Comment: 15 pages, 5 figures; changed title and conten