122 research outputs found

    Optical Coherence Tomography Analysis of Attenuated Plaques Detected by Intravascular Ultrasound in Patients with Acute Coronary Syndromes

    Get PDF
    Background. Recent intravascular ultrasound (IVUS) studies have demonstrated that hypoechoic plaque with deep ultrasound attenuation despite absence of bright calcium is common in acute coronary syndrome. Such “attenuated plaque” may be an IVUS characteristic of unstable lesion. Methods. We used optical coherence tomography (OCT) in 104 patients with unstable angina to compare lesion characteristics between IVUS-detected attenuated plaque and nonattenuated plaque. Results. IVUS-detected attenuated plaque was observed in 41 (39%) patients. OCT-detected lipidic plaque (88% versus 49%, P < 0.001), thin-cap fibroatheroma (48% versus 16%, P < 0.001), plaque rupture (44% versus 11%, P < 0.001), and intracoronary thrombus (54% versus 17%, P < 0.001) were more often seen in IVUS-detected attenuated plaques compared with nonattenuated plaques. Conclusions. IVUS-detected attenuated plaque has many characteristics of unstable coronary lesion. The presence of attended plaque might be an important marker of lesion instability

    Impact of Heterogeneity of Human Peripheral Blood Monocyte Subsets on Myocardial Salvage in Patients With Primary Acute Myocardial Infarction

    Get PDF
    ObjectivesWe examined whether distinct monocyte subsets contribute in specific ways to myocardial salvage in patients with acute myocardial infarction (AMI).BackgroundRecent studies have shown that monocytes in human peripheral blood are heterogeneous.MethodsWe studied 36 patients with primary AMI. Peripheral blood sampling was performed 1, 2, 3, 4, 5, 8, and 12 days after AMI onset. Two monocyte subsets (CD14+CD16−and CD14+CD16+) were measured by flow cytometry. The extent of myocardial salvage 7 days after AMI was evaluated by cardiovascular magnetic resonance imaging as the difference between myocardium at risk (T2-weighted hyperintense lesion) and myocardial necrosis (delayed gadolinium enhancement). Cardiovascular magnetic resonance imaging was also performed 6 months after AMI.ResultsCirculating CD14+CD16−and CD14+CD16+monocytes increased in AMI patients, peaking on days 3 and 5 after onset, respectively. Importantly, the peak levels of CD14+CD16−monocytes, but not those of CD14+CD16+monocytes, were significantly negatively associated with the extent of myocardial salvage. We also found that the peak levels of CD14+CD16−monocytes, but not those of CD14+CD16+monocytes, were negatively correlated with recovery of left ventricular ejection fraction 6 months after infarction.ConclusionsThe peak levels of CD14+CD16−monocytes affect both the extent of myocardial salvage and the recovery of left ventricular function after AMI, indicating that the manipulation of monocyte heterogeneity could be a novel therapeutic target for salvaging ischemic damage

    Improved redox cycling durability in alternative Ni alloy-based SOFC anodes

    Get PDF
    Repeated reduction and oxidation of metallic nickel in the anodes of solid oxide fuel cell (SOFC) causes volume changes and agglomeration. This disrupts the electron conducting network, resulting in deterioration of the electrochemical performance. It is therefore desirable to develop more robust anodes with high redox stability. Here, new cermet anodes are developed, based on nickel alloyed with Co, Fe, and/or Cr. The stable phases of these different alloys are calculated for oxidizing and reducing conditions, and their electrochemical characteristics are evaluated. Whilst alloying causes a slight decrease in power generation efficiency, the Ni-alloy based anodes have significantly improved redox cycle durability. Microstructural observation reveals that alloying results in the formation of a dense oxide film on the surface of the catalyst particle (e.g. Co-oxide or a complex Fe-Ni-Cr oxide). These oxide layers help suppress oxidation of the underlying nickel catalyst particles, preventing oxidation-induced volume changes/agglomeration, and thereby preserving the electron conducting pathways. As such, the use of these alternative Ni-alloy based cermets significantly improves the redox stability of SOFC anodes

    The Hayabusa Spacecraft Asteroid Multi-Band Imaging Camera: AMICA

    Full text link
    The Hayabusa Spacecraft Asteroid Multiband Imaging Camera (AMICA) has acquired more than 1400 multispectral and high-resolution images of its target asteroid, 25143 Itokawa, since late August 2005. In this paper, we summarize the design and performance of AMICA. In addition, we describe the calibration methods, assumptions, and models, based on measurements. Major calibration steps include corrections for linearity and modeling and subtraction of bias, dark current, read-out smear, and pixel-to-pixel responsivity variations. AMICA v-band data were calibrated to radiance using in-flight stellar observations. The other band data were calibrated to reflectance by comparing them to ground-based observations to avoid the uncertainty of the solar irradiation in those bands. We found that the AMICA signal was linear with respect to the input signal to an accuracy of << 1% when the signal level was < 3800 DN. We verified that the absolute radiance calibration of the AMICA v-band (0.55 micron) was accurate to 4% or less, the accuracy of the disk-integrated spectra with respect to the AMICA v-band was about 1%, and the pixel-to-pixel responsivity (flatfield) variation was 3% or less. The uncertainty in background zero-level was 5 DN. From wide-band observations of star clusters, we found that the AMICA optics have an effective focal length of 120.80 \pm 0.03 mm, yielding a field-of-view (FOV) of 5.83 deg x 5.69 deg. The resulting geometric distortion model was accurate to within a third of a pixel. We demonstrated an image-restoration technique using the point-spread functions of stars, and confirmed that the technique functions well in all loss-less images. An artifact not corrected by this calibration is scattered light associated with bright disks in the FOV.Comment: 107 pages, 22 figures, 9 tables. will appear in Icaru
    corecore