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Impact of Heterogeneity of Human Peripheral
Blood Monocyte Subsets on Myocardial Salvage
in Patients With Primary Acute Myocardial Infarction
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Objectives We examined whether distinct monocyte subsets contribute in specific ways to myocardial salvage in patients
with acute myocardial infarction (AMI).

Background Recent studies have shown that monocytes in human peripheral blood are heterogeneous.

Methods We studied 36 patients with primary AMI. Peripheral blood sampling was performed 1, 2, 3, 4, 5, 8, and 12 days
after AMI onset. Two monocyte subsets (CD14�CD16� and CD14�CD16�) were measured by flow cytometry. The
extent of myocardial salvage 7 days after AMI was evaluated by cardiovascular magnetic resonance imaging as the
difference between myocardium at risk (T2-weighted hyperintense lesion) and myocardial necrosis (delayed gadolin-
ium enhancement). Cardiovascular magnetic resonance imaging was also performed 6 months after AMI.

Results Circulating CD14�CD16� and CD14�CD16� monocytes increased in AMI patients, peaking on days 3 and 5 af-
ter onset, respectively. Importantly, the peak levels of CD14�CD16� monocytes, but not those of CD14�CD16�

monocytes, were significantly negatively associated with the extent of myocardial salvage. We also found that
the peak levels of CD14�CD16� monocytes, but not those of CD14�CD16� monocytes, were negatively corre-
lated with recovery of left ventricular ejection fraction 6 months after infarction.

Conclusions The peak levels of CD14�CD16� monocytes affect both the extent of myocardial salvage and the recovery of left
ventricular function after AMI, indicating that the manipulation of monocyte heterogeneity could be a novel therapeu-
tic target for salvaging ischemic damage. (J Am Coll Cardiol 2009;54:130–8) © 2009 by the American College of
Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2009.04.021
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ecent studies have shown that monocytes in human
eripheral blood are heterogeneous (1–3). Differential
xpression of CD14 and CD16 allowed monocytes to be
ivided into 2 subsets: CD14�CD16� and CD14�CD16�

ells. CD14�CD16� cells are often called classic mono-
ytes, because this phenotype resembles the original descrip-
ion of monocytes. Distinct chemokine-receptor expression
rofiles are also among the phenotypic differences recog-
ized between the subsets: for example, CD14�CD16�

onocytes expressed C-C motif chemokine receptor 2
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CCR2), whereas CD14�CD16� monocytes expressed
-X3-C motif chemokine receptor 1 (CX3CR1) (1–3).
Monocytes and mature macrophages are prominent in

he host response to the healing of acute myocardial
nfarction (AMI). The balance between host defense and
epair mechanisms versus the pro-inflammatory properties

See page 139

f the mononuclear phagocyte in injured myocardium
hould be taken into consideration for therapeutic tar-
eting of monocytes/macrophages (4). In view of the
eterogeneity of monocytes, Nahrendorf et al. (5) have
hown very recently that distinct monocyte subsets con-
ribute in specific ways to myocardial ischemic injury in

ouse myocardial infarction (MI), which led us to
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xplore the relevance of monocyte heterogeneity after
MI in humans.
With the advent of delayed-enhancement cardiac mag-

etic resonance (CMR) imaging, it is now possible to
ccurately quantify the extent of myocardial necrosis in
ivo (6). It has also been reported that CMR imaging can
emonstrate the myocardial area at risk, which shows
igh signal intensity on T2-weighted images as a result of
dema in a canine model of reperfused infarction (7).
herefore, it is clinically feasible to noninvasively evalu-

te the extent of myocardial salvage by CMR imaging as
he difference between myocardium at risk and myocar-
ial necrosis (8,9). In fact, a very recent investigation
howed that the myocardial area at risk can be visualized
sing T2-weighted CMR in patients with AMI (8). The
im of this study was to examine whether distinct
onocyte subsets contribute in specific ways to myocar-

ial salvage in patients with AMI.

ethods

he study protocol was approved by the institutional ethics
ommittee of Wakayama Medical University (#2008-535),
nd written informed consent was obtained from either the
atients or their family members.
atient populations. We enrolled 36 primary AMI pa-

ients, 24 unstable angina pectoris (UAP) patients, and 20
table angina pectoris (SAP) patients when they fitted AMI,
AP, or SAP diagnostic criteria as follows. AMI was
iagnosed under the following conditions: 1) when patients
xperienced chest pain within 24 h before admission that
asted for �30 min and was not relieved by sublingual
itroglycerin; 2) when patients showed ST-segment eleva-
ion and/or abnormal Q-wave on an electrocardiogram; and
) when patients showed elevated serum creatine kinase
CK) levels. Exclusion criteria were as follows: 1) AMI for
24 h from onset; 2) a history of renal dysfunction

equiring dialysis; 3) evidence of malignant disease; or
) unwillingness to participate. All patients received coro-
ary angiography on admission and then underwent emer-
ent percutaneous coronary intervention (PCI) using coro-
ary stents. All patients were routinely treated with heparin,

sosorbide dinitrate, ticlopidine, aspirin, and an angiotensin-
onverting enzyme inhibitor or angiotensin II receptor
locker. Unstable angina pectoris was defined as having
schemic chest pain at rest within the preceding 48 h,
ransient ST-T–segment depression, and/or T-wave inver-
ion but no evidence of myocardial necrosis by enzymatic
riteria. Stable angina pectoris was defined as having effort
ngina �3 months and a positive exercise test. The diag-
osis of coronary artery disease was confirmed by coronary
ngiography.
linical parameters. The clinical parameters assessed in-

luded age, sex, and coronary risk factors (smoking, hyper-
ension, diabetes mellitus, hyperlipidemia, and obesity). The

iagnostic criteria for coronary risk factors were as fol- a
ows: hypertension, blood pressure
140/90 mm Hg, and/or a his-

ory of taking antihypertensive
edication; diabetes mellitus,

asting plasma glucose �126 mg/
l, casual plasma glucose �200
g/dl, or a diabetic pattern in

5-g oral glucose tolerance test;
yperlipidemia, serum total cho-

esterol levels �220 mg/dl, or
erum triglyceride levels �150
g/dl; obesity, body mass index
25 kg/m2. Peak CK, peak CK-
yocardial band, and left ven-

ricular ejection fraction (LVEF)
ere selected for analysis as indi-

ators of MI severity.
ytometric analysis. For cyto-
etric analysis, monoclonal anti-

odies against CD14 (fluorescein
sothiocyanate [FITC] or phyco-
rythrin [PE], Clone M5E2, BD
ioscience, San Jose, California),
D16 (PE-CyTM5, Clone 3G8,
D Bioscience), CCR2 (PE,

atalog number FAB151P, R&D Systems Inc., Minneap-
lis, Minnesota), and CX3CR1 (FITC, Clone 2A9-1,
BL, Nagoya, Japan) were used. Whole blood (100 �l) was

ncubated with saturating amounts of antibodies for 15 min
t room temperature in the dark. For erythrocyte lysis and
eukocyte fixation, 1 ml lysing solution was added (BD
ACS Lyse, Becton Dickinson, Heidelberg, Germany).
Cytometric analysis was performed in a fluorescence-

ctivated cell scanner (Becton Dickinson) using Cell Quest
oftware Systems (Becton Dickinson). Monocytes were first
ated in a forward scatter/sideward scatter dot plot, and
hen 3-color fluorescence was measured within the mono-
yte gate (Fig. 1A). The CD14�CD16� cells were defined
s monocytes expressing CD14, but not CD16 (Fig. 1B,
ower right quadrant). Thereafter, CD14�CD16�CCR2
ells were determined (Fig. 1C). The CD14�CD16� cells
ere defined as monocytes expressing CD16 and either high

evels of CD14 (CD14brightCD16�) (Fig. 1B, upper right
uadrant) or lower levels of CD14 (CD14dimCD16�) (Fig.
B, upper left quadrant). Thus, CD14brightCD16� and
D14dimCD16� were not analyzed separately, according to
revious studies (10). Thereafter, CD14�CD16�CX3CR1
ells were determined (Fig. 1C).
lood sampling and analysis. In AMI patients, peripheral
lood samples were collected from all subjects as soon as
ossible after admission and on days 2, 3, 4, 5, 8, and 12
fter the onset of AMI. For UAP patients, peripheral blood
amples were collected from all subjects as soon as possible
nd on days 2 and 3 after admission. For SAP patients,
eripheral blood samples were collected from all subjects on

Abbreviations
and Acronyms

AMI � acute myocardial
infarction

CK � creatine kinase

CMR � cardiac magnetic
resonance

CRP � C-reactive protein

LE � late enhancement

LV � left ventricle

LVEF � left ventricular
ejection fraction

MI � myocardial infarction

MRI � magnetic resonance
imaging

PCI � percutaneous
coronary intervention

PlGF � placental growth
factor

SAP � stable angina
pectoris

UAP � unstable angina
pectoris
dmission because of planned P
CI. The whole blood
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amples obtained from all subjects were used immediately
or flow cytometry. We also collected plasma samples in
thylenediamine tetraacetate anticoagulant tubes and stored
hem at �80°C until assayed.

Plasma levels of placental growth factor (PlGF) were
easured using commercially available enzyme-linked im-
unoadsorbent assay kits (DY264, R&D Systems). High-

ensitivity C-reactive protein (CRP) was analyzed using a
ommercially available testing kit (N-Latex CRP II, Dade
ehring GmbH, Marburg, Germany).
oninvasive CMR imaging protocol. The CMR imaging

tudies were performed using a 1.5-T clinical scanner
Intera Achieva, Philips Medical Systems, Best, the Neth-
rlands) 7 days after the AMI onset, as previously described
8,9). Patients were continuously monitored during the

Figure 1 Fluorescence-Activated Cell Scanner Analysis

(A) Monocytes were gated in a forward scatter (FSC)/sideward scatter (SSC) dot plot.
(lower right quadrant). The CD14�CD16� cells were defined as monocytes expressin
levels of CD14 (upper left quadrant; CD14dimCD16�). (C) For determination of CD14�

erythrin [PE]-conjugated CD14 antibody [Ab], PE-CyTM5-conjugated CD16 Ab, and fluore
cells and CD14�CD16� cells were gated (middle panel), CD14�CD16�CX3CR1� cel
cytes consisted of 95 � 2% CX3CR1� cells (left). Three-color fluorescence (FITC-conju
formed to determine CD14�CD16�CCR2� monocytes. The CD14�CD16� monocytes
xamination using single-lead electrocardiography, repeated i
lood pressure measurements, and pulse oximetry. With the
atient in the supine position, contiguous short-axis cine
mages covering the left ventricle (LV) from base to apex
ere acquired using a standard steady-state free-precession

equence. We then applied a breath-hold short-TI inversion
ecovery pulse sequence (repetition time: 2 R-R intervals;
cho time: 90 ms; slice thickness: 8 mm; field of view: 35
m; matrix: 256 � 512) in 3 short-axis slices (basal,
idventricular, and apical) using a body coil. Each slice was

btained during an end-expiratory breath-hold of 12 to 15 s,
epending on the patient’s heart rate.
We then acquired late enhancement (LE) images in the slice

ocation with the maximum extent of T2 signal abnormality 10
o 15 min after intravenous injection of 0.1 mmol/kg
adolinium-diethylenetriamine penta-acid (Magnevist, Scher-

e CD14�CD16� cells were defined as monocytes expressing CD14, but not CD16
6 and either high levels of CD14 (upper right quadrant; CD14brightCD16�) or lower
�CX3CR1� and CD14�CD16�CCR2� monocytes, 3-color fluorescence (phyco-
sothiocyanate [FITC]-conjugated CX3CR1 Ab) was performed after CD14�CD16�

CD14�CD16�CCR2� cells were measured, respectively. The CD14�CD16� mono-
CD14 Ab, PE-CyTM5-conjugated CD16 Ab, and PE-conjugated CCR2 Ab) was per-
ted of 93 � 6% CCR2� cells (right). H � height.
(B) Th
g CD1
CD16

scein i
ls and
gated
consis
ng, Berlin, Germany). We used a 3-dimensional inversion-
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ecovery turbo-gradient echo sequence, and images were ob-
ained during an end-expiratory breath-hold. We optimized
he inversion time (200 to 300 ms) to null the normal
yocardium. The slice positions for both T2-weighted and
E acquisitions matched those of the cine images. There were
o complications related to the CMR procedures, and all
atients tolerated the procedure well.
MR imaging data analysis. All analyses were performed
y consensus of 2 blinded observers (H.I. and A.K.) on an
ff-line workstation (View Forum, Philips Medical Systems,
indhoven, the Netherlands). Epicardial and endocardial
orders were traced in each cine image to obtain LV
nd-diastolic volume, LV end-systolic volume, and left
entricular ejection fraction (LVEF).

The extent of the area at risk (T2-weighted hyperin-
ense lesion) and myocardial necrosis (delayed gadolin-
um enhancement) were quantified on the same slice
ocation with the maximum extent of T2 signal abnor-

ality (Fig. 2). Percent salvaged myocardium was ob-
ained as follows: 100 � extent of salvaged myocardium/
xtent of the myocardial area at risk.
tatistics. If not stated otherwise, data are expressed as
ean � SD. Because CD14�CD16� and CD14�CD16�

onocytes were not normally distributed (according to the
hapiro-Wilks test), they were expressed as median and
ange and analyzed with nonparametric methods. The
onparametric Mann-Whitney U statistic was used to test
or differences between 2 groups. When �2 groups of
ubjects were compared, the nonparametric Kruskal-Wallis

Figure 2 Cardiac Magnetic Resonance Imaging

Measurement of myocardial salvage index evaluated from cardiac magnetic
resonance short-axis images obtained 7 days after acute myocardial infarction.
In the T2-weighted, fast spin-echo images, the hyperintense areas indicate the
extent of the area at risk (top). Late enhancement bright images show the
infarcted areas (lower bottom). Percent salvaged myocardium was obtained as
follows: 100 � extent of salvaged myocardium/extent of the myocardial area
at risk.
p

est was used. If a significant difference was found, pairwise
omparisons by Bonferroni test were performed for multiple
nalyses. Categorical data were given as percentages and
ere compared by chi-square test. To assess correlations
etween 2 parameters, simple linear regressions were calcu-
ated using the least squares method. Values of p � 0.05
ere considered significant. All statistical analyses were
erformed using the statistical software package SPSS
ersion 11.0 (SPSS Inc., Chicago, Illinois).

esults

atient characteristics. The characteristics of the study
opulation are summarized in Table 1. The clinical charac-
eristics did not significantly differ among the 3 groups. In
MI patients, there were 27 men and 9 women with a mean

ge of 69 � 15 years (range 36 to 85 years). The mean
nterval from AMI onset to reperfusion was 4.3 � 3.4 h.
he mean value of the maximum CK levels was 1,942 �
,892 IU/l, and the mean LVEF during the acute phase was
8 � 17%. Both total white blood cell and neutrophil
ounts were elevated at admission, and thereafter decreased
data not shown). The peak monocyte count was 679 �
59/mm3 (Table 1). Both peak monocyte and peak monocyte
ubset counts after AMI did not significantly differ among
everal parameters of patient characteristics (Table 2).

atural profile of monocyte subsets levels in CAD. Pe-
ipheral whole-blood samples to analyze 2 distinct mono-
yte subsets (CD14�CD16� and CD14�CD16�) were
btained from patients with UAP and AMI as soon as
ossible after admission (day 1) and from patients with
AP on hospital day (day 1) as a control. There were not
ny significant differences in circulating CD14�CD16�

onocytes among the 3 groups (Fig. 3A). Conversely,
irculating CD14�CD16� monocytes were significantly
ecreased in patients with AMI compared with those in
AP or SAP patients (Fig. 3B). In line with previous

tudies (1–3), CD14�CD16� and CD14�CD16� mono-
ytes consisted of 93 � 6% CCR2� cells and 95 � 2%
X3CR1� cells, respectively, in our study population (Fig.
C). The CD14�CD16� and CD14�CD16� monocytes
electively express CCR2 and CX3CR1, respectively (data
ot shown).
ime courses in circulating monocyte subsets levels after
MI. When we conducted measurements in peripheral
hole blood obtained on days 1, 2, 3, 4, 5, 8, and 12 after
MI onset, 2 distinct monocyte subsets were mobilized in

pecific ways after AMI. Circulating CD14�CD16� mono-
ytes increased in AMI patients, peaking on day 2.6 � 0.8
fter onset (Fig. 4B). Although circulating CD14�CD16�

onocytes also increased in AMI patients, peaking on day
.8 � 2.9 after onset, no significant change occurred during
he 12 days after the peak (Fig. 4C). However, we found
hat individual peak values of CD14�CD16� monocytes
ere significantly higher in patients with AMI than in

atients with SAP (Fig. 4D). Next, we examined whether
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laque instability itself could affect monocyte dynamics even
ithout necrosis. In UAP patients, we did not find any

ignificant changes of the 2 monocyte subsets counts during
he following 3 days (Figs. 4E and 4F). In accordance with

Patient Characteristics

Table 1 Patient Characteristics

Characteristic AMI (n � 36)

Age, yrs 69 � 15

Sex, male/female 27/9

Serum creatinine, mg/dl 0.97 � 0.27

Systolic blood pressure, mm Hg 142 � 23

Diastolic blood pressure, mm Hg 83 � 12

Culprit lesion

LAD 20 (56)

LCX 5 (14)

RCA 11 (31)

Coronary risk factor

Diabetes mellitus 9 (25)

Hypertension 19 (53)

Hyperlipidemia 20 (56)

Smoking 15 (42)

Obesity 9 (25)

Medications on admission

Statin use 5 (14)

Beta-blocker use 5 (14)

ACE/ARB use 6 (16)

Aspirin 5 (14)

Reperfusion time, min 259 � 201

Max CK, IU/l 1,942 � 1,892

Max CK-MB, IU/l 186 � 212

LVEF at the onset of MI, % 48 � 17

Peak WBC counts, cells/�l 11,024 � 2,720

Peak neutrophil counts, cells/�l 8,259 � 2,621

Peak PBMC, cells/�l 679 � 259

Data are expressed as mean � SD or n (%).
ACE � angiotensin-converting enzyme; AMI � acute myocardial infa

anterior descending artery; LCX � left circumflex artery; LVEF � left ve
mononuclear cell; RCA � right coronary artery; SAP � stable angina p

atient Characteristics and Peak Monocyte Subset Counts

Table 2 Patient Characteristics and Peak Monocyte Subset Co

Peak Monocytes
(/mm2) p Value

Age �70 yrs 654 � 234
0.26

Age �70 yrs 739 � 266

Males, n 639 � 174
0.79

Females, n 650 � 262

Cigarette smoking (�) 610 � 177
0.37

Cigarette smoking (�) 689 � 231

Hypertension (�) 701 � 190
0.5

Hypertension (�) 578 � 231

Diabetes mellitus (�) 745 � 216
0.36

Diabetes mellitus (�) 617 � 204

Hyperlipemia (�) 663 � 234
0.91

Hyperlipemia (�) 624 � 199

Anterior infarction (�) 699 � 213
0.29

Anterior infarction (�) 584 � 154
ata are expressed as mean � SD.
revious studies (11), peak levels of plasma PlGF after AMI
ignificantly correlated with peak monocyte counts (r �
.76, p � 0.001). We also found that peak levels of PlGF
fter AMI significantly correlated with peak CD14�

UAP (n � 24) SAP (n � 20) p Value

65 � 12 67 � 11 0.31

17/7 12/8 —

0.82 � 0.28 0.84 � 027 0.62

139 � 26 145 � 17 0.77

80 � 16 82 � 16 0.76

13 (54) 9 (45) 0.61

3 (13) 5 (25) 0.47

8 (32) 6 (30) 0.97

8 (33) 6 (30) 0.96

13 (54) 13 (65) 0.65

12 (50) 9 (45) 0.22

11 (46) 9 (45) 0.94

5 (21) 7 (35) 0.55

6 (25) 4 (20) 0.55

4 (16) 4 (20) 0.44

9 (38) 8 (40) 0.65

7 (29) 13 (65) 0.13

— — —

— — —

— — —

— — —

— — —

— — —

— — —

RB � angiotensin receptor blocker; CK � creatine kinase; LAD � left
r ejection fraction; MB � myocardial band; PBMC � peripheral blood
; UAP � unstable angina pectoris; WBC � white blood cell.

�CD16�

ocytes
mm2) p Value

CD14�CD16�

Monocytes
(/mm2) p Value

� 248
0.32

65 � 24
0.19

� 251 77 � 17

� 143
0.73

74 � 39
0.79

� 221 69 � 25

� 206
0.49

75 � 22
0.29

� 192 63 � 25

� 190
0.4

71 � 20
0.26

� 201 58 � 25

� 224
0.63

73 � 18
0.36

� 189 62 � 36

� 157
0.52

72 � 27
0.66

� 223 67 � 16

� 193
0.15

78 � 20
0.3

� 172 64 � 28
rction; A
unts

CD14
Mon

(/

556

655

567

607

582

621

644

534

636

586

631

547

660

521
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D16� monocyte counts (r � 0.78, p � 0.001), but not
ith peak CD14�CD16� monocyte counts, suggesting

hat PlGF may be produced by these cells.
elationship between peak CRP levels and peak monocyte

ubset levels. Peak CD14�CD16� monocytes showed a
ignificant positive correlation with peak CRP levels (r �
.62, p � 0.001). However, peak CD14�CD16� mono-
ytes did not show any significant correlation with peak
RP levels. In addition, neither peak CD14�CD16�

onocytes nor CD14�CD16� monocytes showed signifi-
ant correlation with indicators of MI severity, such as peak
K, peak CK-myocardial band, and LVEF, suggesting that

he increased numbers of the 2 distinct monocyte subsets do
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Figure 3 Monocyte Subset Levels in Coronary Artery Disease

Peripheral blood samples were obtained from patients with acute myocardial
infarction (AMI) and unstable angina pectoris (UAP) as soon as possible after
admission (day 1), and from patients with stable angina pectoris (SAP) on hos-
pital day (day 1). Respective numbers of CD14�CD16� monocytes (A), and
CD14�CD16� monocytes (B) were determined in patients with AMI, UAP, and
SAP. Data are represented as box plot with median and 25th to 75th percen-
tiles (boxes) and 10th to 90th percentiles (whiskers). *Value of p � 0.01 ver-
sus SAP.
ot simply reflect larger infarcts (data not shown). t
ffects of 2 distinct monocyte subsets on acute phase
yocardial salvage and chronic phase of LV function.
aving demonstrated that CD14�CD16� and CD14�

D16� monocytes are sequentially mobilized from bone
arrow into circulation, we next investigated the relationship

etween these 2 monocyte subset levels and the extent of
yocardial salvage that occurred 7 days after AMI. The extent

f myocardial salvage at 7 days after AMI was evaluated by
MR imaging as the difference between myocardium at risk

T2-weighted hyperintense lesion) and myocardial necrosis
delayed gadolinium enhancement) (Fig. 2). The peak levels of
D14�CD16� monocytes were significantly negatively asso-

iated with the extent of myocardial salvage, whereas those of
D14�CD16� monocytes showed no such significant asso-

iation (Figs. 5A and 5B, respectively). Cine MRI imaging was
erformed in 30 patients (83%) during the chronic phase 6
onths after the onset of AMI. In the 30 patients, LVEF

ncreased, but not significantly, by 5 � 7%, from 47 � 10% at
aseline to 51 � 13% at 6-month follow-up (p � 0.098). The
eak levels of CD14�CD16� monocytes were negatively
orrelated with the subsequent changes in LVEF observed
uring the chronic phase 6 months after the onset of AMI
�LVEF, r � �0.60, p � 0.001) (Fig. 5C), whereas those of
D14�CD16� showed no significant association (data not

hown).

iscussion

his study demonstrated for the first time that patients with
T-segment elevation AMI showed CD14�CD16� and
D14�CD16� monocytes that were sequentially mobilized

fter AMI successfully treated with PCI. More importantly,
e showed for the first time that the peak levels of
D14�CD16� monocytes, but not CD14�CD16� mono-

ytes, were significantly negatively associated with the ex-
ent of myocardial salvage that occurred 7 days after AMI.
hese results demonstrated that dynamic changes occur in 2
istinct monocyte subset levels in patients with AMI, and
hat stochastic profiling of this monocyte/macrophage sys-
em may hold clinical utility with respect to myocardial
alvage after MI.

Several clinical studies have demonstrated that elevated
onocyte counts are associated with LV dysfunction after
CI for AMI, suggesting a role for monocytes in the
evelopment of LV remodeling after reperfused MI (12,13).
y contrast, Hojo et al. (14) reported that patients showing

mproved LV systolic function after MI exhibited signifi-
antly higher monocyte counts than did patients without
mprovement. Similarly, Iwama et al. (11) reported that
ncreased monocyte counts associated with the local expres-
ion of PlGF were related to improved LV systolic function
fter MI.

Taking these findings together, it remains unclear how
eripheral monocytosis is related to LV remodeling after
uccessful PCI, and these contradicting results underscore

he need to explore the relevance of monocyte heterogeneity
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fter AMI. In this regard, Nahrendorf et al. (5) have
emonstrated that distinct monocyte subsets contribute in
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ays, and scavenge necrotic debris by a combination of
nflammatory mediator expression, proteolysis, and phago-
ytosis. Between 4 and 7 days after infarction, Ly-6Clo

onocytes, which correspond to CD14�CD16� monocytes
n humans, accumulate preferentially via CX3CR1.

In accordance with the experimental study, we have
emonstrated for the first time that 2 monocyte subsets,
D14�CD16� and CD14�CD16�, are sequentially mo-
ilized after AMI in the clinical settings. More importantly,
e have also shown that the peak levels of CD14�CD16�

onocytes are significantly negatively correlated with myo-
ardial salvage after AMI. However, the mechanisms
hrough which CD14�CD16� monocytes enhance injury
emain unclear. Previous studies (15,16) have shown that
onocyte chemoattractant protein (MCP)-1, a ligand for
CR2, is markedly up-regulated in an ischemic myocar-
ium and is responsible for the recruitment of mononuclear
ells into the injured myocardium. In addition, Dewald et
l. (17) showed that MCP�/� mice have significantly lower
umor necrosis factor-�, interleukin-1�, and interleukin-6
essenger ribonucleic acid expression after 6 h of reperfu-

ion compared with wild-type infarcts in a closed-chest
odel of reperfusion murine myocardial infarction. Taken

ogether, monocytes recruited in the myocardium through
CR2/MCP-1 interactions might play a critical role in the
athogenesis of myocardial salvage. Moreover, in contrast to
previous experimental study, which shows that Ly-6Clo

CD14�CD16� analogs) monocytes were found to be
ritical for myocardial healing via myofibroblasts accumula-
ion, angiogenesis, and deposition of collagen, this study did
ot show any significant effect of CD14�CD16� mono-
ytes on myocardial salvage followed by reperfused MI.
owever, we could not exclude the possibility that it may

otentially be the result of a short period of observation (7
ays after reperfusion).
As a means of assessing the area at risk, Aletras et al. (7)

ave suggested T2-weighted CMR imaging, with the no-
able feature of decoupling the imaging for several days after
he acute presentation. Furthermore, CMR imaging allows
imultaneous direct visualization of not only myocardial
ecrosis by LE MRI but also the area at risk by T2-
eighted MRI (8,9). Reperfusion leads to an inflammatory-

ike response with intracellular and extracellular myocardial
dema (18), and subsequent prolongation of the T2 relax-
tion time and high T2 signal intensities (19). The high T2
ignal intensity in AMI most likely reflects the increased
ree water content in the area of reversible injury (20,21). In
act, the area of high T2 signal abnormality closely matched
he pathologically determined myocardial area at risk
18,22). Interestingly, Friedrich et al. (8) reported very
ecently that the area at risk can be visualized using
2-weighted CMR in patients with AMI. In contrast, LE

s observed only in areas of irreversible myocardial injury
22). Thus, we can directly assess the extent of salvaged
yocardium (T2 positive but LE negative) using the 2
A

B

C

∆

Figure 5 Relationship Between 2 Monocyte
Subset Levels and Extent of Myocardial Salvage

The relationship between 2 distinct monocyte subset levels and extent of myocar-
dial salvage during the acute phase or left ventricular ejection fraction (LVEF) dur-
ing the chronic phase. Peak counts of (A) CD14�CD16� monocytes but not (B)
CD14�CD16� monocytes significantly correlated with extent of myocardial sal-
vage. Extent of myocardial salvage was demonstrated as percent salvaged myocar-
dium (salvaged myocardium normalized to myocardium at risk). Left ventricle
function was assessed with cine magnetic resonance imaging. (C) The peak levels
of CD14�CD16� monocytes were negatively correlated with the changes of LVEF
(�EF) that occurred between the acute and chronic phases.
ethods.
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tudy limitations. First, the results were prospective in
erms of patient enrollment but were observational in
ature. Thus, our study does not provide a mechanistic
xplanation for the improvement of myocardial salvage that
ccurred 7 days after MI associated with the heterogeneity
f monocyte subsets. Second, our study cannot determine
hether the elevation of 2 distinct monocyte subsets reflects

he extent of monocyte subset infiltration into an ischemic
yocardium. Third, we did not perform analysis of periph-

ral monocytes, especially pro-inflammatory mediators by
D14�CD16� cells; however, previous experimental work

upports the inflammatory/injurious potential of the cells
15–17). Finally, although we performed CMR assessment
f myocardial salvage 7 days after reperfusion, we cannot
xclude the possibility that earlier acquisition would have
nfluenced the extent of myocardial salvage.

onclusions

n patients with primary AMI, CD14�CD16� and
D14�CD16� monocytes are sequentially mobilized after
MI. More importantly, the peak levels of CD14�CD16�

onocytes are associated with the impairment of myocardial
alvage in the acute phase after AMI and adverse LV remod-
ling, indicating that manipulation of CD14�CD16� mono-
ytes could become a novel therapeutic target for salvaging
schemic damage.
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