30 research outputs found

    Formation of Fluorapatite in the Equilibrium System CaO–P<sub>2</sub>O<sub>5</sub>–HF–H<sub>2</sub>O at 298 K in a Nitrogen Atmosphere

    No full text
    The process of biomineralization of apatite in nature has been studied by scientists from various fields of science for more than a century. Unlike the volcanogenic, hydrothermal, and other types of igneous apatites, the genesis of which is entirely clear, the formation of phosphate ores of marine sedimentary origin is still debatable. Since phosphate concentrations in water bodies are too low for the spontaneous precipitation of solid phosphates, the study of different ways for their concentration is of particular interest. In this work, phase equilibria in the system CaO–P2O5–HF–H2O at 298 K, involving fluorapatite formation, have been studied. Fluorapatite is known to be the most common phosphate mineral and the main source of phosphorus on Earth, playing an important role in the mineralization process of dental tissues in vertebrates. The equilibrium in the system defined above was studied at a low mass fraction of the liquid phase components, i.e., in conditions close to natural. It has been shown that the compounds of variable composition with the fluorapatite structure containing HPO42− ions were formed in the acid region of this system. These compounds are formed at pH ≤ 7.0 and have invariant points with monetite, CaHPO4, and fluorite, CaF2. Stoichiometric fluorapatite was formed at the lowest concentrations of the liquid phase components in a neutral and weakly alkaline medium and had an invariant point with Ca(OH)2. The composition of the resulting equilibrium solid phases was found to be dependent on the Ca/P ratio of the initial components and pH of the equilibrium liquid phase. Fluorite CaF2 was present in each sample obtained in this study

    Thermal Stability of Iron- and Silicon-Substituted Hydroxyapatite Prepared by Mechanochemical Method

    No full text
    In this study, hydroxyapatite with the substitution of calcium cations by iron and phosphate by silicate groups was synthesized via a mechanochemical method. The as-prepared compounds have the general formula Ca10−xFex(PO4)6−x(SiO4)x(OH)2−xOx/2 with x = 0–1.5. The thermal stability of the as-prepared compounds was studied by ex situ annealing of powders in a furnace. It has been established that, at 800 °C for x ≤ 0.5, a partial decomposition of the substituted apatites occurs with the formation of the β–Ca3(PO4)2 phase. At high “x” values, the formation of this phase starts at the lower temperature of 700 °C, followed by the formation of Fe2O3 at 900 °C. The introduction of iron and silicate ions into the hydroxyapatite lattice was shown to decrease its thermal stability

    Diffusion of Copper Ions in the Lattice of Substituted Hydroxyapatite during Heat Treatment

    No full text
    The doping of hydroxyapatite with various substituent ions can give this material new and useful properties. Nonetheless, local distortions of structure after doping can change the properties of the material. In this work, the thermal stability of copper-substituted hydroxyapatite synthesized by the mechanochemical method was investigated. In situ diffraction analyses showed that copper ion diffusion during the heating of Cu-substituted hydroxyapatite promotes phase transformations in the substituted hydroxyapatite. The behavior of copper ions was studied in samples with ratios (Ca + Cu)/P = 1.75 and 1.67. It was found that in both cases, single-phase Cu-substituted hydroxyapatite with the general formula Ca10&minus;xCux(PO4)6&minus;y(CO3)y(OH)2&minus;yOy is formed by the mechanochemical synthesis. When heated at approximately 600&ndash;700 &deg;C, the lattice loses copper cations, but at higher temperatures, CuO diffusion into the hydroxyl channel takes place. Cuprate-substituted hydroxyapatite with the general formula Ca10(PO4)6(OH)2&minus;2x(CuO2)x forms in this context. At 1200 &deg;C, the sample is single-phase at (Ca + Cu)/P = 1.75. Nonetheless, slow cooling of the material leads to the emergence of a CuO phase, as in the case of (Ca + Cu)/P = 1.67, where the material contains not only CuO but also Cu-substituted tricalcium phosphate. In the manufacture of ceramic products from Cu-substituted hydroxyapatite, these structural transformations must be taken into account, as they alter not only thermal but also biological properties of such materials

    Treatment of Multi-Walled Carbon Nanotubes with Dichromic Acid: Oxidation and Appearance of Intercalation

    No full text
    This work is dedicated to the study of the treatment of multi-walled carbon nanotubes (MWCNTs) with dichromic acid. The dichromic acid was formed by dissolving different concentrations of CrO3 in water. The effect of the concentration of dichromic acid on the change in texture characteristics, elemental composition, defectiveness, graphitization degree, and surface chemistry of MWCNTs was investigated using various analytical techniques, such as transmission electron microscopy, energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). Testing of MWCNTs as electrodes for supercapacitors in 3.5 M H2SO4 solution was carried out using cyclic voltammetry. A decrease in the average diameter of CNTs after treatment was found. The EDX and XPS showed that the oxygen content on the surface of MWCNTs increased after treatment with dichromic acid. The formation of Cr2O3 after treatment with dichromic acid was detected by XPS. High angle annular dark field scanning transmission electron microscopy was used to confirm the intercalation of the chromium-containing compound between graphene layers of MWCNTs after treatment with dichromic acid. It was found that two different types of MWCNTs showed diverse behavior after treatment. The highest specific capacitance of the MWCNTs after treatment was 141 F g−1 (at 2 mV s−1) compared to 0.3 F g−1 for the untreated sample

    Effects of the Carbon Support Doping with Nitrogen for the Hydrogen Production from Formic Acid over Ni Catalysts

    No full text
    Porous nitrogen-doped and nitrogen-free carbon materials possessing high specific surface areas (400&ndash;1000 m2 g&minus;1) were used for deposition of Ni by impregnation with nickel acetate followed by reduction. The nitrogen-doped materials synthesized by decomposition of acetonitrile at 973, 1073, and 1173 K did not differ much in the total content of incorporated nitrogen (4&ndash;5 at%), but differed in the ratio of the chemical forms of nitrogen. An X-ray photoelectron spectroscopy study showed that the rise in the synthesis temperature led to a strong growth of the content of graphitic nitrogen on the support accompanied by a reduction of the content of pyrrolic nitrogen. The content of pyridinic nitrogen did not change significantly. The prepared nickel catalysts supported on nitrogen-doped carbons showed by a factor of up to two higher conversion of formic acid as compared to that of the nickel catalyst supported on the nitrogen-free carbon. This was related to stabilization of Ni in the state of single Ni2+ cations or a few atoms clusters by the pyridinic nitrogen sites. The nitrogen-doped nickel catalysts possessed a high stability in the reaction at least within 5 h and a high selectivity to hydrogen (97%)

    Hydroxyapatite Double Substituted with Zinc and Silicate Ions: Possibility of Mechanochemical Synthesis and In Vitro Properties

    No full text
    In this study, the mechanochemical synthesis of substituted hydroxyapatite (HA) containing zinc and silicon ions having a chemical formula of Ca10−xZnx(PO4)6−x(SiO4)x(OH)2−x, where x = 0.2, 0.6, 1.0, 1.5, and 2.0, was carried out. The synthesized materials were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and inductively coupled plasma spectroscopy. We found that HA co-substituted with zinc and silicate formed up to x = 1.0. At higher concentrations of the substituents, the formation of large amounts of an amorphous phase was observed. The cytotoxicity and biocompatibility of the co-substituted HA was studied in vitro on Hek293 and MG-63 cell lines. The HA co-substituted with zinc and silicate demonstrated high biocompatibility; the lowest cytotoxicity was observed at x = 0.2. For this composition, good proliferation of MG-63 osteoblast-like cells and an increased solubility compared with that of HA were detected. These properties allow us to recommend the synthesized material for medical applications, namely, for the restoration of bone tissue and manufacture of biodegradable implants
    corecore