47 research outputs found

    Internet of Things Virtual Networks: Bringing Network Virtualization to Resource-Constrained Devices

    Get PDF
    Networks of smart resource-constrained objects, such as sensors and actuators, can support a wide range of application domains. In most cases these networks were proprietary and stand-alone. More recently, many efforts have been undertaken to connect these networks to the Internet using standard protocols. Current solutions that integrate smart resource-constrained objects into the Internet are mostly gateway-based. In these solutions, security, firewalling, protocol translations and intelligence are implemented by gateways at the border of the Internet and the resource-constrained networks. In this paper, we introduce a complementary approach to facilitate the realization of what is called the Internet of Things. Our approach focuses on the objects, both resource-constrained and non-constrained, that need to cooperate by integrating them into a secured virtual network, named an Internet of Things Virtual Network or IoT-VN. Inside this IoT-VN full end-to-end communication can take place through the use of protocols that take the limitations of the most resource-constrained devices into account. We describe how this concept maps to several generic use cases and, as such, can constitute a valid alternative approach for supporting selected applications. A first implementation demonstrating the key concepts of this approach is described. It illustrates the feasibility of integrating resource-constrained devices into virtual networks, but also reveals open challenges.The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n°258885 (SPITFIRE project), from the IBBT ICON project GreenWeCan, and a VLIR PhD scholarship to Isam Ishaq

    Enabling the web of things: facilitating deployment, discovery and resource access to IoT objects using embedded web services

    Get PDF
    Today, the IETF Constrained Application Protocol (CoAP) is being standardised. CoAP takes the internet of things to the next level: it enables the implementation of RESTful web services on embedded devices, thus enabling the construction of an easily accessible web of things. However, before tiny objects can make themselves available through embedded web services, several manual configuration steps are still needed to integrate a sensor network within an existing networking environment. In this paper, we describe a novel self-organisation solution to facilitate the deployment of constrained networks and enable the discovery, end-to-end connectivity and service usage of these newly deployed sensor nodes. By using embedded web service technology, the need of other protocols on these resource constrained devices is avoided. It allows automatic hierarchical discovery of CoAP servers, resulting in a browsable hierarchy of CoAP servers, which can be accessed both over CoAP and hypertext transfer protocol.The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 258885 (SPITFIRE project), from the iMinds ICON project O’CareCloudS, from a VLIR PhD grant to Isam Ishaq and through an FWO pos tdoc research grant for Eli De Poorter

    Experimental Evaluation of Unicast and Multicast CoAP Group Communication

    Get PDF
    The Internet of Things (IoT) is expanding rapidly to new domains in which embedded devices play a key role and gradually outnumber traditionally-connected devices. These devices are often constrained in their resources and are thus unable to run standard Internet protocols. The Constrained Application Protocol (CoAP) is a new alternative standard protocol that implements the same principals as the Hypertext Transfer Protocol (HTTP), but is tailored towards constrained devices. In many IoT application domains, devices need to be addressed in groups in addition to being addressable individually. Two main approaches are currently being proposed in the IoT community for CoAP-based group communication. The main difference between the two approaches lies in the underlying communication type: multicast versus unicast. In this article, we experimentally evaluate those two approaches using two wireless sensor testbeds and under different test conditions. We highlight the pros and cons of each of them and propose combining these approaches in a hybrid solution to better suit certain use case requirements. Additionally, we provide a solution for multicast-based group membership management using CoAP.The research leading to these results has received funding from a VLIRPhD scholarship to Isam Ishaq

    Discovery and group communication for constrained Internet of Things devices using the Constrained Application Protocol

    Get PDF
    The ubiquitous Internet is rapidly spreading to new domains. This expansion of the Internet is comparable in scale to the spread of the Internet in the ’90s. The resulting Internet is now commonly referred to as the Internet of Things (IoT) and is expected to connect about 50 billion devices by the year 2020. This means that in just five years from the time of writing this PhD the number of interconnected devices will exceed the number of humans by sevenfold. It is further expected that the majority of these IoT devices will be resource constrained embedded devices such as sensors and actuators. Sensors collect information about the physical world and inject this information into the virtual world. Next processing and reasoning can occur and decisions can be taken to enact upon the physical world by injecting feedback to actuators. The integration of embedded devices into the Internet introduces new challenges, since many of the existing Internet technologies and protocols were not designed for this class of constrained devices. These devices are typically optimized for low cost and power consumption and thus have very limited power, memory, and processing resources and have long sleep periods. The networks formed by these embedded devices are also constrained and have different characteristics than those typical in todays Internet. These constrained networks have high packet loss, low throughput, frequent topology changes and small useful payload sizes. They are referred to as LLN. Therefore, it is in most cases unfeasible to run standard Internet protocols on this class of constrained devices and/or LLNs. New or adapted protocols that take into consideration the capabilities of the constrained devices and the characteristics of LLNs, are required. In the past few years, there were many efforts to enable the extension of the Internet technologies to constrained devices. Initially, most of these efforts were focusing on the networking layer. However, the expansion of the Internet in the 90s was not due to introducing new or better networking protocols. It was a result of introducing the World Wide Web (WWW), which made it easy to integrate services and applications. One of the essential technologies underpinning the WWW was the Hypertext Transfer Protocol (HTTP). Today, HTTP has become a key protocol in the realization of scalable web services building around the Representational State Transfer (REST) paradigm. The REST architectural style enables the realization of scalable and well-performing services using uniform and simple interfaces. The availability of an embedded counterpart of HTTP and the REST architecture could boost the uptake of the IoT. Therefore, more recently, work started to allow the integration of constrained devices in the Internet at the service level. The Internet Engineering Task Force (IETF) Constrained RESTful Environments (CoRE) working group has realized the REST architecture in a suitable form for the most constrained nodes and networks. To that end the Constrained Application Protocol (CoAP) was introduced, a specialized RESTful web transfer protocol for use with constrained networks and nodes. CoAP realizes a subset of the REST mechanisms offered by HTTP, but is optimized for Machine-to-Machine (M2M) applications. This PhD research builds upon CoAP to enable a better integration of constrained devices in the IoT and examines proposed CoAP solutions theoretically and experimentally proposing alternatives when appropriate. The first part of this PhD proposes a mechanism that facilitates the deployment of sensor networks and enables the discovery, end-to-end connectivity and service usage of newly deployed sensor nodes. The proposed approach makes use of CoAP and combines it with Domain Name System (DNS) in order to enable the use of userfriendly Fully Qualified Domain Names (FQDNs) for addressing sensor nodes. It includes the automatic discovery of sensors and sensor gateways and the translation of HTTP to CoAP, thus making the sensor resources globally discoverable and accessible from any Internet-connected client using either IPv6 addresses or DNS names both via HTTP or CoAP. As such, the proposed approach provides a feasible and flexible solution to achieve hierarchical self-organization with a minimum of pre-configuration. By doing so we minimize costly human interventions and eliminate the need for introducing new protocols dedicated for the discovery and organization of resources. This reduces both cost and the implementation footprint on the constrained devices. The second, larger, part of this PhD focuses on using CoAP to realize communication with groups of resources. In many IoT application domains, sensors or actuators need to be addressed as groups rather than individually, since individual resources might not be sufficient or useful. A simple example is that all lights in a room should go on or off as a result of the user toggling the light switch. As not all IoT applications may need group communication, the CoRE working group did not include it in the base CoAP specification. This way the base protocol is kept as efficient and as simple as possible so it would run on even the most constrained devices. Group communication and other features that might not be needed by all devices are standardized in a set of optional separate extensions. We first examined the proposed CoAP extension for group communication, which utilizes Internet Protocol version 6 (IPv6) multicasts. We highlight its strengths and weaknesses and propose our own complementary solution that uses unicast to realize group communication. Our solution offers capabilities beyond simple group communication. For example, we provide a validation mechanism that performs several checks on the group members, to make sure that combining them together is possible. We also allow the client to request that results of the individual members are processed before they are sent to the client. For example, the client can request to obtain only the maximum value of all individual members. Another important optional extension to CoAP allows clients to continuously observe resources by registering their interest in receiving notifications from CoAP servers once there are changes to the values of the observed resources. By using this publish/subscribe mechanism the client does not need to continuously poll the resource to find out whether it has changed its value. This typically leads to more efficient communication patterns that preserve valuable device and LLN resources. Unfortunately CoAP observe does not work together with the CoAP group communication extension, since the observe extension assumes unicast communication while the group communication extension only support multicast communication. In this PhD we propose to extend our own group communication solution to offer group observation capabilities. By combining group observation with group processing features, it becomes possible to notify the client only about certain changes to the observed group (e.g., the maximum value of all group members has changed). Acknowledging that the use of multicast as well as unicast has strengths and weaknesses we propose to extend our unicast based solution with certain multicast features. By doing so we try to combine the strengths of both approaches to obtain a better overall group communication that is flexible and that can be tailored according to the use case needs. Together, the proposed mechanisms represent a powerful and comprehensive solution to the challenging problem of group communication with constrained devices. We have evaluated the solutions proposed in this PhD extensively and in a variety of forms. Where possible, we have derived theoretical models and have conducted numerous simulations to validate them. We have also experimentally evaluated those solutions and compared them with other proposed solutions using a small demo box and later on two large scale wireless sensor testbeds and under different test conditions. The first testbed is located in a large, shielded room, which allows testing under controlled environments. The second testbed is located inside an operational office building and thus allows testing under normal operation conditions. Those tests revealed performance issues and some other problems. We have provided some solutions and suggestions for tackling those problems. Apart from the main contributions, two other relevant outcomes of this PhD are described in the appendices. In the first appendix we review the most important IETF standardization efforts related to the IoT and show that with the introduction of CoAP a complete set of standard protocols has become available to cover the complete networking stack and thus making the step from the IoT into the Web of Things (WoT). Using only standard protocols makes it possible to integrate devices from various vendors into one bigWoT accessible to humans and machines alike. In the second appendix, we provide an alternative solution for grouping constrained devices by using virtualization techniques. Our approach focuses on the objects, both resource-constrained and non-constrained, that need to cooperate by integrating them into a secured virtual network, named an Internet of Things Virtual Network or IoT-VN. Inside this IoT-VN full end-to-end communication can take place through the use of protocols that take the limitations of the most resource-constrained devices into account. We describe how this concept maps to several generic use cases and, as such, can constitute a valid alternative approach for supporting selected applications

    IETF standardization in the field of the internet of things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities.The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 258885 (SPITFIRE project), from the iMinds ICON projects GreenWeCan and O’CareCloudS, a FWO postdoc grant for Eli De Poorter and a VLIR PhD scholarship to Isam Ishaq

    Discovery and Group Communication for Constrained Internet of Things Devices using the Constrained Application Protocol

    Get PDF
    The ubiquitous Internet is rapidly spreading to new domains. This expansion of the Internet is comparable in scale to the spread of the Internet in the ’90s. The resulting Internet is now commonly referred to as the Internet of Things (IoT) and is expected to connect about 50 billion devices by the year 2020. This means that in just five years from the time of writing this PhD the number of interconnected devices will exceed the number of humans by sevenfold. It is further expected that the majority of these IoT devices will be resource constrained embedded devices such as sensors and actuators. Sensors collect information about the physical world and inject this information into the virtual world. Next processing and reasoning can occur and decisions can be taken to enact upon the physical world by injecting feedback to actuators. The integration of embedded devices into the Internet introduces new challenges, since many of the existing Internet technologies and protocols were not designed for this class of constrained devices. These devices are typically optimized for low cost and power consumption and thus have very limited power, memory, and processing resources and have long sleep periods. The networks formed by these embedded devices are also constrained and have different characteristics than those typical in todays Internet. These constrained networks have high packet loss, low throughput, frequent topology changes and small useful payload sizes. They are referred to as LLN. Therefore, it is in most cases unfeasible to run standard Internet protocols on this class of constrained devices and/or LLNs. New or adapted protocols that take into consideration the capabilities of the constrained devices and the characteristics of LLNs, are required. In the past few years, there were many efforts to enable the extension of the Internet technologies to constrained devices. Initially, most of these efforts were focusing on the networking layer. However, the expansion of the Internet in the 90s was not due to introducing new or better networking protocols. It was a result of introducing the World Wide Web (WWW), which made it easy to integrate services and applications. One of the essential technologies underpinning the WWW was the Hypertext Transfer Protocol (HTTP). Today, HTTP has become a key protocol in the realization of scalable web services building around the Representational State Transfer (REST) paradigm. The REST architectural style enables the realization of scalable and well-performing services using uniform and simple interfaces. The availability of an embedded counterpart of HTTP and the REST architecture could boost the uptake of the IoT. Therefore, more recently, work started to allow the integration of constrained devices in the Internet at the service level. The Internet Engineering Task Force (IETF) Constrained RESTful Environments (CoRE) working group has realized the REST architecture in a suitable form for the most constrained nodes and networks. To that end the Constrained Application Protocol (CoAP) was introduced, a specialized RESTful web transfer protocol for use with constrained networks and nodes. CoAP realizes a subset of the REST mechanisms offered by HTTP, but is optimized for Machine-to-Machine (M2M) applications. This PhD research builds upon CoAP to enable a better integration of constrained devices in the IoT and examines proposed CoAP solutions theoretically and experimentally proposing alternatives when appropriate. The first part of this PhD proposes a mechanism that facilitates the deployment of sensor networks and enables the discovery, end-to-end connectivity and service usage of newly deployed sensor nodes. The proposed approach makes use of CoAP and combines it with Domain Name System (DNS) in order to enable the use of userfriendly Fully Qualified Domain Names (FQDNs) for addressing sensor nodes. It includes the automatic discovery of sensors and sensor gateways and the translation of HTTP to CoAP, thus making the sensor resources globally discoverable and accessible from any Internet-connected client using either IPv6 addresses or DNS names both via HTTP or CoAP. As such, the proposed approach provides a feasible and flexible solution to achieve hierarchical self-organization with a minimum of pre-configuration. By doing so we minimize costly human interventions and eliminate the need for introducing new protocols dedicated for the discovery and organization of resources. This reduces both cost and the implementation footprint on the constrained devices. The second, larger, part of this PhD focuses on using CoAP to realize communication with groups of resources. In many IoT application domains, sensors or actuators need to be addressed as groups rather than individually, since individual resources might not be sufficient or useful. A simple example is that all lights in a room should go on or off as a result of the user toggling the light switch. As not all IoT applications may need group communication, the CoRE working group did not include it in the base CoAP specification. This way the base protocol is kept as efficient and as simple as possible so it would run on even the most constrained devices. Group communication and other features that might not be needed by all devices are standardized in a set of optional separate extensions. We first examined the proposed CoAP extension for group communication, which utilizes Internet Protocol version 6 (IPv6) multicasts. We highlight its strengths and weaknesses and propose our own complementary solution that uses unicast to realize group communication. Our solution offers capabilities beyond simple group communication. For example, we provide a validation mechanism that performs several checks on the group members, to make sure that combining them together is possible. We also allow the client to request that results of the individual members are processed before they are sent to the client. For example, the client can request to obtain only the maximum value of all individual members. Another important optional extension to CoAP allows clients to continuously observe resources by registering their interest in receiving notifications from CoAP servers once there are changes to the values of the observed resources. By using this publish/subscribe mechanism the client does not need to continuously poll the resource to find out whether it has changed its value. This typically leads to more efficient communication patterns that preserve valuable device and LLN resources. Unfortunately CoAP observe does not work together with the CoAP group communication extension, since the observe extension assumes unicast communication while the group communication extension only support multicast communication. In this PhD we propose to extend our own group communication solution to offer group observation capabilities. By combining group observation with group processing features, it becomes possible to notify the client only about certain changes to the observed group (e.g., the maximum value of all group members has changed). Acknowledging that the use of multicast as well as unicast has strengths and weaknesses we propose to extend our unicast based solution with certain multicast features. By doing so we try to combine the strengths of both approaches to obtain a better overall group communication that is flexible and that can be tailored according to the use case needs. Together, the proposed mechanisms represent a powerful and comprehensive solution to the challenging problem of group communication with constrained devices. We have evaluated the solutions proposed in this PhD extensively and in a variety of forms. Where possible, we have derived theoretical models and have conducted numerous simulations to validate them. We have also experimentally evaluated those solutions and compared them with other proposed solutions using a small demo box and later on two large scale wireless sensor testbeds and under different test conditions. The first testbed is located in a large, shielded room, which allows testing under controlled environments. The second testbed is located inside an operational office building and thus allows testing under normal operation conditions. Those tests revealed performance issues and some other problems. We have provided some solutions and suggestions for tackling those problems. Apart from the main contributions, two other relevant outcomes of this PhD are described in the appendices. In the first appendix we review the most important IETF standardization efforts related to the IoT and show that with the introduction of CoAP a complete set of standard protocols has become available to cover the complete networking stack and thus making the step from the IoT into the Web of Things (WoT). Using only standard protocols makes it possible to integrate devices from various vendors into one bigWoT accessible to humans and machines alike. In the second appendix, we provide an alternative solution for grouping constrained devices by using virtualization techniques. Our approach focuses on the objects, both resource-constrained and non-constrained, that need to cooperate by integrating them into a secured virtual network, named an Internet of Things Virtual Network or IoT-VN. Inside this IoT-VN full end-to-end communication can take place through the use of protocols that take the limitations of the most resource-constrained devices into account. We describe how this concept maps to several generic use cases and, as such, can constitute a valid alternative approach for supporting selected applications

    Facilitating sensor deployment, discovery and resource access using embedded web services

    Get PDF
    Smart embedded objects such as sensors and actuators will become an important part of the Internet of Things. With recent technologies, it has now become possible to deploy a sensor network and interconnect it with IPv6 Internet. However, several manual configuration steps are still needed to integrate a sensor network within an existing networking environment. In this paper we describe a novel self-organization solution to facilitate the deployment of sensor networks and enable the discovery, end-to-end connectivity and service usage of these newly deployed sensor nodes. The proposed approach makes use of embedded web service technology, i.e. the IETF Constrained Application Protocol (CoAP). Automatic hierarchical discovery of CoAP servers is one of the key features, resulting in a browsable hierarchy of CoAP servers, up to the level of the sensor resources, which can be accessed both over CoAP and HTTP and through the use of either DNS names or IPv6 addresses. To demonstrate the feasibility of our approach we have implemented the solution and deployed it on a test setup, which is publicly accessible to everyone.The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n°258885 (SPITFIRE project) and from the IBBT ICON project GreenWeCan

    Observing CoAP groups efficiently

    Get PDF
    It is envisioned that by the year 2020 the Internet will contain more than 50 billion devices, among which the majority of them will have constraints in terms of memory, processing power or energy. As a consequence, they are often unable to run current standard Internet protocols, requiring special, optimized protocols. A number of these protocols, covering the different layers of the protocol stack, have been developed and standardized lately. At the application level, the Constrained Application Protocol (CoAP) is proposed by the IETF as an HTTP replacement that is suitable for constrained devices. CoAP is a very light-weight base protocol that can be extended with optional specifications to satisfy specific use case needs. Two important optional specifications are observe, allowing monitoring of a CoAP resource over a period of time, and group communication, supporting interactions with multiple CoAP devices at once. Currently, these two optional specifications do not work together, i.e., it is not possible to gain the benefits of both of them at the same time. In this paper we present an alternative and novel approach to CoAP group communication that works well with the CoAP observe extension. In addition, it enables to perform operations on the observed results, bringing intelligence closer to the data sources.The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 258885 (SPITFIRE project), from the iMinds ICON projects O'CareCloudS and a VLIR PhD scholarship to Isam Ishaq

    Group Communication in Constrained Environments using CoAP-based Entities

    Get PDF
    The Constrained Application Protocol (CoAP) is a new Internet protocol that is currently being standardized. CoAP allows access to the drastically increasing number of smart objects and their sensing resources from virtually anywhere. It is a light-weight protocol designed to cope with the restrictions imposed by the limited resources (CPU, memory, power,…) of many smart objects. Depending on the application, information from individual objects might not be sufficient, reliable, or useful. An application may need to aggregate and/or compare data from a group of objects in order to obtain accurate results. Although multicast may be used to transmit the same request to several objects, multicast communication with smart objects has some disadvantages. Programming individual requests is another solution but lacks flexibility and opportunities for reusability. In this paper we propose a novel CoAP-based approach for communication with a group of resources across multiple smart objects. This approach organizes the group of resources that should be accessed into a new CoAP resource, called an entity, and nicely integrates several important aspects of entity management: creation, validation, usage and manipulation. In order to demonstrate the feasibility of this approach we present an implementation and experimental validation.The CoAP++ framework was realized through funding by the European Union's Seventh Framework Programme under grant agreement n°258885 (SPITFIRE project)

    Entity creation for constrained devices

    Get PDF
    A method for creating a profile for accessing or manipulating resources across a plurality of nodes in a network is disclosed. An entity manager receives a request from a client to create a profile, and preferably validates the request. The entity manager generates said profile and the profile is addressable by a profile identifier. A client may use the profile to interact with the resources across the plurality of nodes using the profile identifier
    corecore