
Group Communication in Constrained Environments

using CoAP-based Entities

Isam Ishaq, Jeroen Hoebeke, Floris Van den Abeele, Ingrid Moerman, Piet Demeester

Department of Information Technology (INTEC)

Ghent University – iMinds

Ghent, Belgium

{isam.ishaq, jeroen.hoebeke, floris.vandenabeele, ingrid.moerman, piet.demeester}@intec.ugent.be

Abstract— The Constrained Application Protocol (CoAP) is a

new Internet protocol that is currently being standardized. CoAP

allows access to the drastically increasing number of smart

objects and their sensing resources from virtually anywhere. It is

a light-weight protocol designed to cope with the restrictions

imposed by the limited resources (CPU, memory, power,…) of

many smart objects. Depending on the application, information

from individual objects might not be sufficient, reliable, or

useful. An application may need to aggregate and/or compare

data from a group of objects in order to obtain accurate results.

Although multicast may be used to transmit the same request to

several objects, multicast communication with smart objects has

some disadvantages. Programming individual requests is another

solution but lacks flexibility and opportunities for reusability. In

this paper we propose a novel CoAP-based approach for

communication with a group of resources across multiple smart

objects. This approach organizes the group of resources that

should be accessed into a new CoAP resource, called an entity,

and nicely integrates several important aspects of entity

management: creation, validation, usage and manipulation. In

order to demonstrate the feasibility of this approach we present

an implementation and experimental validation.

Keywords— Internet of Things; CoAP; sensors; wireless sensor

networks; group communication; entities

I. INTRODUCTION

The Do-It-Yourself (DIY) movement is spreading beyond
traditional domains, such as home painting, to more modern
domains, such as programming. DIY programming gets
especially interesting when it involves real-time data from the
growing amount of smart objects with embedded sensors and
when actuators can be triggered to perform real-world actions
accordingly. It gets even more interesting and appealing when
access to these smart objects can be obtained over the
ubiquitous Internet – leading to what is now mostly known as
the Internet-of-Things (IoT). However, these smart objects are
typically optimized for low-power consumption and low-cost,
are constrained in their resources (CPU, RAM, ROM…) and
thus unable to run standard Internet protocols. The networks
that connect these objects together are often referred to as low
power and lossy networks (LLNs).

Recently a lot of effort has been made to develop open
standards that cover many aspects of communication and
access to smart objects. At the networking layer 6LoWPAN
allows IPv6 communication with these objects through an

adaptation layer. At the application layer standards are being
prepared to allow access to these objects in a RESTful way,
similar to how most information on the Internet is accessed. To
this end the IETF established the Constrained RESTful
Environments (CoRE) working group with the aim at realizing
the REST architecture in a suitable form for the most
constrained nodes and networks. CoRE is aimed at machine-to-
machine (M2M) applications such as smart energy and
building automation [1].

Typically, each of the constrained servers has at least one
CoAP resource that may be queried by clients to obtain
information about the smart objects themselves (e.g. battery
level), about the environment that they monitor (e.g.
temperature of the room), or to trigger the objects to perform
real-world actions (switch the light on). Examples of resources
include: “/temperature”, “/humidity”, “/room_location”,
“/picture”, “/light_control”, etc. The discovery of these
resources is essential in M2M application environments. For
HTTP Web Servers, the discovery of resources is typically
called Web Linking [2]. The use of Web Linking for the
description and discovery of resources hosted by constrained
web servers (CoAP or HTTP) is specified by the CoRE Link
Format [3]. A well-known URI "/.well-known/core" is defined
as a default entry-point for requesting the list of links with the
resources hosted by a server. Once the list of available
resources is obtained from the server, the client can send
further requests to obtain the value of a certain resource.

Depending on the application, information from individual
objects might not be sufficient, reliable, or useful. An
application may need to aggregate and/or compare data from
several nodes in order to obtain accurate results. In the same
way, a single user request might need to trigger a series of
actions on multiple actuators to perform a single user request.
Although multicast may be used to transmit the same request to
several objects, multicast communication in LLNs has some
disadvantages. For instance, it is difficult to avoid duplication
of messages, and duplication is undesirable in an LLN where
bandwidth is limited for these constrained objects.
Furthermore, basic multicast is not reliable in an LLN, which is
problematic for requests that require guaranteed delivery.
Also, the creation of multicast groups, defining which objects
should be addressed when using a particular multicast address,
is hard to realize inside LLNs. Additionally, the use of
multicast increases the footprint of the code that needs to fit on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Al-Quds University Digital Repository

https://core.ac.uk/display/287328435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the constrained objects, and it is to be expected that this
functionality will not be available in many LLNs.

As an alternative, unicast-based solutions should be
considered. Some unicast-based features have been introduced
to alleviate some of the problems above, but these features are
insufficient. The current CoRE drafts do not foresee any
unicast-based way to manipulate resources that are located on
multiple smart objects with a single client request. To
overcome this shortcoming and be able to perform such
composite requests, intelligence is typically added to the client
application to make it communicate with the smart objects
individually. This leads to more complex user applications, and
the added intelligence and programming cannot be shared with
other applications easily. Furthermore, complex user
applications may be unmanageable. Any modifications to those
complex user applications may require significant testing time,
thus limiting the flexibility of the user applications.
Additionally a large overhead of communication between the
client machine and the smart objects is generated, especially
when many smart objects are involved in these actions. When
the communication between the client and the smart objects is
done across the Internet, delays are unpredictable and a
sequence of actuator commands might arrive out of order and
possibly have unwanted results. Furthermore, if the
communication occurs over costly links, communication
between the client and the smart objects might get
unnecessarily expensive.

The discussed approaches are able to realize
communication with a group of resources, but each exhibit
some limitations. Therefore, in this paper we propose a novel
CoAP-based approach for communication with a group of
resources across multiple smart objects. First, we will briefly
discuss some related work. Next, in section III we describe our
approach in detail and evaluate it in section VI. Section V
concludes this work.

II. RELATED WORK

The group communication draft [4] discusses fundamentals
and use cases for group communication patterns with CoAP.
Building upon IPv6 multicast capabilities, the draft describes
how CoAP should be used to interact with multiple smart
objects. This approach exhibits the limitations as discussed
above. Also multicasts are not useful when a single user action
needs to trigger different sensor requests, since one multicast
request delivers the same message to all group members.

Simple unicast solutions are defined in the CoRE Interfaces
draft [5]. Among other interface types, this draft defines the
Batch interface type and its extension, the Linked Batch
interface type. Batch interfaces are used to manipulate a
collection of sub-resources at the same time. Contrary to the
basic Batch, which is a collection statically defined by the web
server, a Linked Batch is dynamically controlled by a web
client. A Linked Batch resource has no sub-resources. Instead
the resources forming the batch are referenced using Web
Linking [2] and the CoRE Link Format [3]. The draft does not
foresee any way to manipulate resources that are located on
multiple smart objects with a single client request.

An approach somewhat more similar to ours, also using the
notion of an entity, has been presented in [6]. The aim here is
to annotate real-world objects by using entities that are
automatically created based on semantic information, which
resides on the constrained devices. One problem of using
semantics on constrained devices is that semantics can easily
require a lot of memory that might not be available on the
constrained devices. Further, in our approach users can create
entities as required and we address important aspects related to
entity validation and entity behavior.

To our knowledge, this is the only work that explores
communication solutions for interacting with a group of CoAP-
enabled constrained devices. Next to this, there exist other
solutions to realize or improve multicast communication in
Wireless Sensor Networks, such as [7], [8]. These solutions
can alleviate some of the problems related to (reliable)
multicasting, but their scope is different from the work
presented here.

III. APPROACH

We aim to create an intermediately level of aggregation to
be able to easily manipulate a group of resources across
multiple smart objects. To avoid increasing the footprint of the
constrained devices, we use the same technology as used to
manipulate individual resources, i.e. CoAP, and extend it
accordingly. Such a group of resources is called an entity and
the entity can be used or manipulated through a single CoAP
request. Similarly, the creation of an entity by a client is
realized via a single CoAP request and includes a complete
validation of the entity. Furthermore we propose the creation of
profiles for the created entities. The use of entity profiles
allows the client to specify in more detail how the entity should
behave (e.g. if it should use confirmable or non-confirmable
CoAP messages), and, through updating the profile, allows
manipulation of this behavior. As such, we strive to combine
ease of creation, ease of usage and flexibility in behavior into a
complete solution for interacting with CoAP resources from
different objects inside a LLN. By building upon being
standardized concepts, the impact on the constrained devices is
limited. In the following subsections we discuss the details of
our approach.

A. System Overview

We call the component that manages the entities, the Entity
Manager (EM). This component, which can reside e.g. on the
Border Gateway of the LLN, is responsible for maintaining
entities that are created from groups of CoAP servers (i.e.
sensors and actuators) inside the LLN. Clients on the Internet
can interact with an EM to create new entities and/or customize
how these entities should behave. Optionally the client can
elect to contact a resource directory [9] in order to discover
which resources are available in the network. Fig. 1 shows an
overview of the involved components.

The EM functionality does not have to be put on a dedicated
device. Theoretically any CoAP server can be extended to
become an EM. The choice of the most appropriate location to
put the EM functionality depends on the size and topology of
the network. For example, it can reside on a smart object in the

Fig. 1. Clients create entities consisting of several smart object resources

on the Entity Manager. Clients can optionaly query a resource directory

to discover the existence of the resources.

Fig. 2. Entity Manager high level structure.

Fig. 3. A CoAP client requesting from an Entity Manger to create a new

entity that contains two resources.

constrained network with enough resources, in the Cloud, on
the client device itself, or on a gateway on the edge of the
LLN. The latter case has the added benefit that security can be
centrally managed besides offloading the processing from
constrained devices.

Regardless of the location of the EM, it will serve as a
“proxy” between the client and the constrained devices. Client
requests will be sent to the EM, which will analyze and verify
the requests and then issue the appropriate requests to the
constrained devices using CoAP. Once the EM receives
responses from the constrained devices, it will combine them
according to the client needs and will send back an aggregated
response to the client.

When a client tries to create a new entity consisting of a
group of resources inside LLNs, the EM performs a sanity
check on the request in order to make sure that the resulting
entity would make sense. For example it verifies that the
resources inside the entity are valid, if they support a certain
content format or if their data can be aggregated.
Customization of the entity behavior is accomplished by
creating profiles for the entities. A profile of an entity can
specify for example whether to return the values of all
resources in the entity, only the computed average of all values
or a subset of all values. Fig. 2 shows a high level structure of
the Entity Manager. It shows that the EM contains two
databases:

• Entity Database: In this database all entities are stored
along with their profiles as defined by the user.

• Capabilities database: This optional database provides
rules that can be used to match user requests with
sensor capabilities. This can be as simple as translating
a request for temperature in degrees Celsius while
obtaining the data from as sensor that only supports
Fahrenheit. It can also be more complex, e.g. converting
from one content format into the other.

B. Entity Creation

To facilitate the creation and manipulation of entities, the
Entity Manager offers a CoAP resource “/e”. We call this
resource the Entity Management Resource. This interface
supports only the CoAP POST request method. As payload of

the request, it expects a collection of resources in link CoRE
format [3], which together should form the entity. In the
response, the Location-Path CoAP option is used to specify the
name of the newly created resource. In the current design, the
payload of the response is in plain text and describes the results
of the validation tests performed by the entity manager on the
collection of resources.

When a client wants to create an entity consisting of several
sub-resources, it has to compose a CoAP POST request and
send it to the Entity Management resource on the Entity
Manager. The EM creates the entity, assigns it a unique URI,
and stores the entity in the entity database for future usage.
Then the EM starts the entity validation process (explained in
the next subsection). The client is informed about the URI to
use in order to access or further customize the newly created
entity and about the results of the validation of the entity. If the
entity did not pass the validation process the client should fix
any errors and resubmit the entity for validation again before
the client can use the entity.

An example of the entity creation process is shown in Fig.
3. In this simple example the client requests the creation of an
entity consisting of two sub-resources: coap://[Sen5]/tmp and
coap://[Sen8]/tmp. The entity manger creates the new entity,
assigns it the URI “/1” and informs the client about the newly
created entity. From now on, any client can access the newly
created entity by accessing the “/1” resource on the EM. Please
note the validation process is not shown in Fig. 3 for
simplicity.

Fig. 4. Entity validation process flow.

C. Validation Process

Whenever a client requests to create a new entity or to
modify an existing entity, the EM performs a validation
process. The purpose of this validation process is twofold: 1)
Make sure that the sub-resources in the entity exist and can be
used. 2) Derive the properties of the entity based on the
properties of the sub-resources it contains. If the entity passes
validation the EM marks the entity as a valid entity and stores
the entity along with its calculated properties in the entity
database for future usage. If the entity fails validation it is still
created, but marked as invalid. The entity validation is based
on EM’s knowledge of the individual sub-resources and their
profiles and based on the knowledge in the capabilities
database as will be discussed in the next paragraphs.

Resource profiles can be used to express capabilities of a
CoAP server and its resources [10]. Profiles are usually
expressed in JSON format [11]. To briefly illustrate resource
profiles let’s assume that in Fig. 3 the temperature sensor at
"coap://sen5.example/tmp” supports the "Uri-Host" (3),
"ETag" (4), “Observe” (6), "Uri-Port" (7), "Uri-Path" (11) and
"Content-Format" (12) CoAP options (op). This sensor further
supports the "application/senml+json" (55) content format (cf)
and the allowed method is GET (1). This will result in sen5
having the following profile:

1) Can the resources be used?
If the Entity Manager does not know any of the sub-

resources in an entity (e.g. based on knowledge in a resource
directory) or does not know the sub-resource capabilities, it
tries to obtain this information according to a fallback
mechanism as follows. First the EM tries to contact the object
containing the resource in order to obtain the resource profile,
since this would provide the most complete information about
the resource. If the resource profile does not exist, the EM tries
to obtain any information about this resource from /.well-
known/core of the respective object. If this fails as well, the
EM tries to query the resource directly to discover, as a
minimum, if the resource exists or not. The validation process
that the entity manger performs on entities is shown in a
simplified form in Fig. 4. Basically the process ensures the
following:

• The individual sub-resources contained in the entity are
valid (e.g. the resources exist on the respective nodes).

• The requested operations can be performed on the
individual sub-resources (e.g. which CoAP options are
supported, which RESTful methods are allowed?).

• The individual sub-resources do not conflict. A sample
conflict can occur when an entity creation request

contains two sub-resources on the same actuator asking
it to do contradictory actions, e.g. open and close at the
same time.

• The responses sent by the individual sub-resources can
be combined together using a common dominator or
knowledge from the capabilities database

2) Entity Profile
Once the EM knows all information about the sub-

resources that should become part of the entity and once all
necessary checks have passed, the EM creates a profile for the
entity based on this information and the EM’s capabilities
database. To illustrate this let’s further assume that the second
temperature sensor in Fig. 3. "coap://sen8.example.org/tmp”
supports the same options as sen5 except for the observe
option. Only the GET method is allowed and the supported
content formats on this sensor are "text/plain" (0) and
"application/senml+json" (55). Thus sen8 will have the
following profile:

Based on these two profiles the EM constructs a profile for
the newly created entity. This profile contains information
related to the resource itself, as described in [10]. In this
example, this includes the options that are supported, the
supported methods (only GET) and the content format
"application/senml+json" (55). In addition, the profile is
extended with an entity specific part, providing more
information about the entity itself. The resulting profile of the
entity looks as follows:

Res: 2.05 Content (application/json)

{

 "profile":[

 {

 "path":"tmp",

 "op":[3,4,7,11,12],

 "cf":[0,55],

 "m":[1]

 }

]
}

Res: 2.05 Content (application/json)

{

 "profile":[

 {

 "path":"tmp",

 "op":[3,4,6,7,11,12],

 "cf":[55],

 "m":[1]

 }

]

}

Fig. 5. Simplified entity usage process flow.

Fig. 6. A CoAP client requesting from an Entity Manger to obtain the

values for the enity that was previosly created in Fig. 3.

This simple example illustrates how an entity profile is
constructed; either based on information from individual
resource profiles or based on information retrieved via other
means such as resources attributes known from /.well-
known/core. Much more information than shown here can be
included and, by using a flexible representation format, the
profile concept can be easily extended with new information.

D. Entity Usage

Once an entity is created the response contains the URI of
the dynamically created resource name. The client can now
interact with the entity by issuing a single CoAP request to the
resource representing the entity. When a request for an entity
arrives, the process flow as shown in Fig. 5 is executed. The
EM breaks down the request into its components and sends the
individual requests to the respective objects using unicast
CoAP messages. It can either do that in parallel or sequentially.
Once all needed answers are received, the EM creates a
response to the client based on the individual responses and
sends it to the client. Note that how many sub-resources should
respond, how the response is composed and how it should look
like can be changed be customizing the entity profile as will be
explained later on. Fig. 6 shows an example of using the entity
that was created previously in Fig. 3. The client issues a GET
request on the entity’s resource “/1”. This results in the EM
issuing two GET requests to the individual sub-resources,
waiting for replies from both of them and then sending back
both results in one combined response back to the client.

E. Entity Modification and Behaviour Manipulation

It is possible that a client wants to modify an entity after its
creation. For example, a client could want to add new sub-
resources to the collection of sub-resources in the entity or
remove a number of sub-resources. Alternatively, the client
could like to customize the behavior of an existing entity. The
latter can include aspects such as the number or percentage of
sub-resources that should respond before the entity manager
replies to the client, the content format of the response, the
operation (e.g. average, max, min, etc.) that should be
performed on the results before sending them to the client, etc.
Modifications to the entity or to its behavior can be made by
updating the entity’s profile and posting the updated
information (PUT or POST) to coap://[EM]/.well-
known/profile?path=”[ENTITY_URI]”, in which /.well-
known/profile is a resource for accessing the profile of a

resource as described in [10] and ENTITY_URI the URI of the
entity, e.g. “/1” in our example. When a client wants to modify
the profile of an entity, this information is passed to the EM,
which will validate the request and change the profile if the
validation was successful. Finally, removing the entity can be
realized by deleting the profile of an entity or, alternatively, by
performing a DELETE request on the entity resource itself.

IV. EVALUATION

In order to evaluate our approach we have implemented it
using the CoAP++ framework [12]. The framework itself and
the entity implementation on top of it have been realized in
Click Router, a C++ based modular framework that can be
used to realize any network packet processing functionality
[13]. The framework’s interoperability with other CoAP
implementations has been formally tested by the European
Telecommunications Standards Institute (ETSI), a non-profit
standards organization, in two events called CoAP Plugtests
[14]. At the moment, the functionality for creating, validating
and using entities has been implemented as described above.
Fig. 7 shows a screenshot demonstrating the result of sending a
CoAP POST request to the Entity Manager to create an entity
with five heterogeneous sub-resources. This request resulted in
the creation of the entity with the URI “/2” and in the

Res: 2.05 Content (application/json)

{

 "profile":[

 {

 "path":"1",

 "op":[3,4,7,11,12],

 "cf":[55],

 "m":[1]

 }

],

 "entity":[

 {

 "r":"coap://[Sen5]/tmp,coap://[Sen8]/tmp"

 }

]

}

Fig. 7. Sending a CoAP POST request to the Entity Manager to create an

entity with five sub-resource, resulted in the creation of the entity with the

URI “/2” and in the validation of the entity.

Fig. 8. Sending a CoAP GET request to the entity results in reply that

combines the results of querying all sub-resources in the entity.
validation of this entity by querying all sub-resources profiles.
All complexity related to the creation and validation of the
entity is hidden for the client and managed transparently by the
EM. At this moment, the entity has been created and the client
can use the newly created entity and interact with it by sending
a single CoAP request to the entity resource. Fig. 8 shows such
a client issuing a CoAP GET request to the newly created
entity on the Entity Manager. The request ultimately results in
a single reply from the EM, which combines the results of
querying all five sub-resources of the entity. The client does
not have to bother executing all individual requests, and
processing the corresponding results.

V. CONCLUSION

In this paper we have presented a novel solution for
interacting with a group of CoAP resources across multiple
smart objects. It provides an interesting alternative to
multicast-based solutions, which are challenging to realize in a
constrained environment, and to application-based solutions,
which simply program the required functionality. An Entity
Manager, which can reside anywhere, turns groups of
resources into entities. A strong point of our approach is that it
nicely integrates the important aspects of entity management:
creation, validation, usage and manipulation. At the side of the
constrained devices, it requires no additional complexity,
except support for profiles in order to realize more powerful
validation. The introduction of entity profiles introduces a lot
of flexibility and opportunities for further extensions regarding
how entities should behave. We have implemented our
proposal and demonstrated and validated its feasibility.

As future work, we foresee a detailed evaluation of our
solution. We will explore several aspects (overhead, timing,
scalability, etc.) related to the creation, validation and usage in
realistic sensor networks and, if possible, compare it with
existing multicast-based solutions. Also, additional ways to
interact with entities, by extending the profiles, will be
investigated. As such, we hope to realize a powerful enabler
for group communication in LLNs and an interesting building
block for IoT applications.

ACKNOWLEDGMENT

The CoAP++ framework was realized through funding by
the European Union's Seventh Framework Programme under
grant agreement n°258885 (SPITFIRE project).

REFERENCES

[1] “Constrained RESTful environments (core),” [Online], Available:
http://datatracker.ietf.org/wg/core/ [Accessed: 28-Dec-2012].

[2] M. Nottingham, “Web linking,” IETF, 2010.

[3] Z. Shelby, “Constrained RESTful environments (CoRE) link format,”
IETF, 2012.

[4] A. Rahman and E. Dijk, “Group communication for CoAP,” draft-ietf-
core-groupcomm-05, work in progress, IETF, 2013.

[5] Z. Shelby and M. Vial, “CoRE interfaces,” draft-shelby-core-interfaces-
03, work in progress, IETF, 2012.

[6] H. Hasemann, O. Kleine, A. Kroeller, and M. Leggieri, “Annotating
real-world objects using semantic entities,” in EWSN 2013, the
European Conference on Wireless Sensor Networks, 2013, pp. 67–82.

[7] J. Hui and R. Kelsey, “Multicast protocol for low power and lossy
networks (MPL).” IETF, 2013.

[8] S. Eswaran, A. Misra, F. Bergamaschi, and T. La Porta, “Utility-based
bandwidth adaptation in mission-oriented wireless sensor networks,”
ACM Transactions on Sensor Networks, vol. 8, no. 2, pp. 1–26, 2012.

[9] Z. Shelby, S. Krco, and C. Bormann, “CoRE resource directory,” draft-
shelby-core-resource-directory-04, work in progress, IETF, 2012.

[10] B. Greevenbosch, J. Hoebeke, and I. Ishaq, “CoAP profile description
Format,” draft-greevenbosch-core-profile-description-01, work in
progress, IETF, 2012.

[11] “JSON.” [Online]. Available: http://www.json.org/. [Accessed: 11-Mar-
2013].

[12] I. Ishaq, J. Hoebeke, J. Rossey, E. De Poorter, I. Moerman, and P.
Demeester, “Facilitating sensor deployment, discovery and resource
access using embedded web services,” in 6th Int. Conf. on Innovative

Mobile and Internet Services in Ubiquitous Computing, 2012, pp. 717–
724.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems, vol. 18,
no. 3, pp. 263–297, Aug. 2000.

[14] C. Lerche, K. Hartke, and M. Kovatsch, “Industry adoption of the
Internet of Things: A constrained application protocol survey,” in 7th Int.

Workshop on Service Oriented Architectures in Converging Networked
Environments (SOCNE 2012), 2012.

