81 research outputs found

    Technological Applications of Porphyrins and Related Compounds: Spintronics and Micro-/Nanomotors

    Get PDF
    The vital role played by porphyrins in cells and their use in therapeutic processes are well known. More recently, the technological applications of porphyrins have attracted the attention of researchers. Porphyrins have the property of half-metallic material, i.e., molecules that can host transition metals making feasible the production of spin-polarized electronic states at different channels. Therefore, porphyrins and hemeproteins are among the materials that have spin-filtering property to be applied in spintronics. Molecular spintronics is an emerging and highly relevant field due to their applications to the development of high-capacity information-storage devices and quantum computers. The catalytic properties of porphyrins and related compounds such as the hemeproteins are also applicable in the fabrication of micro-/nanomotors (MNMs). In this chapter, we describe the advances and future perspectives in the technological applications of porphyrins and related compounds in spintronic devices and micro-/nanomotors

    Ferricytochrome c Directly Oxidizes Aminoacetone to Methylglyoxal, a Catabolite Accumulated in Carbonyl Stress

    Get PDF
    Age-related diseases are associated with increased production of reactive oxygen and carbonyl species such as methylglyoxal. Aminoacetone, a putative threonine catabolite, is reportedly known to undergo metal-catalyzed oxidation to methylglyoxal, NH4+ ion, and H2O2 coupled with (i) permeabilization of rat liver mitochondria, and (ii) apoptosis of insulin-producing cells. Oxidation of aminoacetone to methylglyoxal is now shown to be accelerated by ferricytochrome c, a reaction initiated by one-electron reduction of ferricytochrome c by aminoacetone without amino acid modifications. the participation of O-2(center dot-) and HO center dot radical intermediates is demonstrated by the inhibitory effect of added superoxide dismutase and Electron Paramagnetic Resonance spin-trapping experiments with 5,5'-dimethyl-1-pyrroline-N-oxide. We hypothesize that two consecutive one-electron transfers from aminoacetone (E-0 values = -0.51 and -1.0 V) to ferricytochrome c (E-0 = 0.26 V) may lead to aminoacetone enoyl radical and, subsequently, imine aminoacetone, whose hydrolysis yields methylglyoxal and NH4+ ion. in the presence of oxygen, aminoacetone enoyl and O-2(center dot-) radicals propagate aminoacetone oxidation to methylglyoxal and H2O2. These data endorse the hypothesis that aminoacetone, putatively accumulated in diabetes, may directly reduce ferricyt c yielding methylglyoxal and free radicals, thereby triggering redox imbalance and adverse mitochondrial responses.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)INCT Processos Redox em Biomedicina (Brazil)Univ São Paulo, Dept Bioquim, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Bioquim & Biol Mol, São Paulo, BrazilUniversidade Federal de São Paulo, Inst Ciencias Ambientais Quim & Farmaceut, São Paulo, BrazilUniv São Paulo, Dept Fis & Informat, São Paulo, BrazilUniv Fed ABC, Ctr Ciencias Nat & Humanas, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Bioquim & Biol Mol, São Paulo, BrazilUniversidade Federal de São Paulo, Inst Ciencias Ambientais Quim & Farmaceut, São Paulo, BrazilWeb of Scienc

    Baccharis dracunculifolia, the main source of green propolis, exhibits potent antioxidant activity and prevents oxidative mitochondrial damage

    Get PDF
    Baccharis dracunculifolia DC (Asteraceae) is the main botanical source used by honeybees to produce Brazilian green propolis whose hepatoprotective properties have been already described. in this work we investigated the protective effects of the glycolic extract of B. dracunculifolia (GEBd) against oxidative stress in isolated rat liver mitochondria (RLM). the GEBd was prepared by fractionated percolation using propylene glycol as solvent. the total phenols and flavonoids, which are substances with recognized antioxidant action, were quantified in GEBd and the phytochemical analysis was carried out by HPLC. GEBd exhibited significant scavenger activity towards DPPH radicals and superoxide anions in a concentration-dependent manner, and also a Fe2+ chelating activity. GEBd decreased the basal H2O2 generation and the Fe2+- or t-BuOOH-induced ROS production in isolated mitochondria. Lipid oxidation of mitochondrial membranes, protein thiol groups and GSH oxidation were also prevented by GEBd. This shows that B. dracunculifolia exhibit potent antioxidant activity protecting liver mitochondria against oxidative damage and such action probably contribute to the antioxidant and hepatoprotective effects of green propolis. (C) 2011 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Mogi das Cruzes UMC, Ctr Interdisciplinar Invest Bioquim CIIB, Mogi Das Cruzes, SP, BrazilUniv Estadual Paulista UNESP, Inst Quim, São Paulo, BrazilFac Ciencias Farmaceut Ribeirao Preto FCFRP USP, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Bioquim, São Paulo, BrazilUniv Fed ABC UFABC, Ctr Ciencias Nat & Humanas CCNH, Santo Andre, SP, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Bioquim, São Paulo, BrazilFAPESP: 2008/01724-4FAPESP: 2008/07246-7CNPq: 301672/2009-1CNPq: 136255/2009-4Web of Scienc

    Recycling of the high valence states of heme proteins by cysteine residues of thimet-oligopeptidase

    Get PDF
    The peptidolytic enzyme THIMET-oligopeptidase (TOP) is able to act as a reducing agent in the peroxidase cycle of myoglobin (Mb) and horseradish peroxidase (HRP). The TOP-promoted recycling of the high valence states of the peroxidases to the respective resting form was accompanied by a significant decrease in the thiol content of the peptidolytic enzyme. EPR (electron paramagnetic resonance) analysis using DBNBS spin trapping revealed that TOP also prevented the formation of tryptophanyl radical in Mb challenged by H2O2. The oxidation of TOP thiol groups by peroxidases did not promote the inactivating oligomerization observed in the oxidation promoted by the enzyme aging. These findings are discussed towards a possible occurrence of these reactions in cells.FAPESP (08/04948-0)CNPqUNIFESPUFABCCAPE

    Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen

    Get PDF
    The interaction of cytochrome c (cyt c) with cardiolipin (CL) induces protein conformational changes that favor peroxidase activity. This process has been correlated with CL oxidation and the induction of cell death. Here we report evidence demonstrating the generation of singlet molecular oxygen [O-2((1)Delta(g))] by a cyt c-CL complex in a model membrane containing CL. The formation of singlet oxygen was directly evidenced by luminescence measurements at 1270 nm and by chemical trapping experiments. Singlet oxygen generation required cyt c-CL binding and occurred at pH values higher than 6, consistent with lipid-protein interactions involving fully deprotonated CL species and positively charged residues in the protein. Moreover, singlet oxygen formation was specifically observed for tetralinoleoyl CL species and was not observed with monounsaturated and saturated CL species. Our results show that there are at least two mechanisms leading to singlet oxygen formation: one with fast kinetics involving the generation of singlet oxygen directly from CL hydroperoxide decomposition and the other involving CL oxidation. The contribution of the first mechanism was clearly evidenced by the detection of labeled singlet oxygen [O-18(2)((1)Delta(g))] from liposomes supplemented with 18-oxygen-labeled CL hydroperoxides. However quantitative analysis showed that singlet oxygen yield from CL hydroperoxides was minor (<5%) and that most of the singlet oxygen is formed from the second mechanism. Based on these data and previous findings we propose a mechanism of singlet oxygen generation through reactions involving peroxyl radicals (Russell mechanism) and excited triplet carbonyl intermediates (energy transfer mechanism).FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional para o Desenvolvimento Cientifico e Tecnologico (CNPq)CNPq (Conselho Nacional para o Desenvolvimento Cientifico e Tecnologico)CAPES/PROCAD-NF (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior/Programa Nacional de Cooperacao Academica Novas Fronteiras)CAPES/PROCADNF (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior/Programa Nacional de Cooperacao Academica Novas Fronteiras)INCT de Processos Redox em Biomedicina - RedoxomaINCT de Processos Redox em Biomedicina RedoxomaNAPRedoxomaNAP-RedoxomaL'OREAL-UNESCO for Women in ScienceLOREALUNESCO for Women in ScienceJohn Simon Guggenheim Memorial FoundationJohn Simon Memorial Guggenheim Foundatio

    Photo-induced electron transfer in supramolecular materials of titania nanostructures and cytochrome c

    Get PDF
    In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 μg m−2) than that adsorbed on the titanate nanotubes (1.75 μg m−2). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy21974177426CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP475235/2010-0; 2011/01541-0Sem informação2008/04849-0; 2009/15558-1; 2011/01541-

    Structure and peroxidase activity of ferric Streptomyces clavuligerus orf10-encoded protein P450CLA: UV-visible, CD, MCD and EPR spectroscopic characterization

    Get PDF
    The present study reports the spectroscopic characterization by UV-visible absorption spectroscopy, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) of the recombinant orf10-encoded P450-camphor like protein (P450CLA)of Streptomyces clavuligerus expressed in Escherichia coli Rosetta in the native form and associated to external ligands containing the β-lactam, oxazole and alkylamine-derived (alcohol) moieties of the clavulamic acid. Considering the diversity of potential applications for the enzyme, the reactivity with tert-butylhydroperoxide (tert-BuOOH) was also characterized. P450CLA presents a covalently bound heme group and exhibited the UV-visible, CD and MCD spectral features of P450CAM including the fingerprint Soret band at 450 nm generated by the ferrous CO-complex. P450CLA was converted to high valence species by tert-BuOOH and promoted homolytic scission of the O-O bond. The radical profile of the reaction was tert-butyloxyl as primary and methyl and butylperoxyl as secondary radicals. The secondary methyl and butylperoxyl radicals resulted respectively from the β-scission of the alkoxyl radical and from the reaction of methyl radical with molecular oxygen
    corecore