203 research outputs found

    Optomechanics assisted with a qubit: From dissipative state preparation to many-body physics

    Full text link
    We propose and analyze nonlinear optomechanical protocols that can be implemented by adding a single atom to an optomechanical cavity. In particular, we show how to engineer the environment in order to dissipatively prepare the mechanical oscillator in a superposition of Fock states with fidelity close to one. Furthermore, we discuss how a single atom in a cavity with several mechanical oscillators can be exploited to realize nonlinear many-body physics by stroboscopically driving the mechanical oscillators. We show how to prepare non-classical many-body states by either applying coherent protocols or engineering dissipation. The analysis of the protocols is carried out using a perturbation theory for degenerate Liouvillians and numerical tools. Our results apply to other systems where a qubit is coupled to a mechanical oscillator via a bosonic mode, e.g., in cavity quantum electromechanics

    Quantum Ratchets for Quantum Communication with Optical Superlattices

    Full text link
    We propose to use a quantum ratchet to transport quantum information in a chain of atoms trapped in an optical superlattice. The quantum ratchet is created by a continuous modulation of the optical superlattice which is periodic in time and in space. Though there is zero average force acting on the atoms, we show that indeed the ratchet effect permits atoms on even and odd sites to move along opposite directions. By loading the optical lattice with two-level bosonic atoms, this scheme permits to perfectly transport a qubit or entangled state imprinted in one or more atoms to any desired position in the lattice. From the quantum computation point of view, the transport is achieved by a smooth concatenation of perfect swap gates. We analyze setups with noninteracting and interacting particles and in the latter case we use the tools of optimal control to design optimal modulations. We also discuss the feasibility of this method in current experiments.Comment: Published version, 9 pages, 5 figure

    Master equation approach to optomechanics with arbitrary dielectrics

    Full text link
    We present a master equation describing the interaction of light with dielectric objects of arbitrary sizes and shapes. The quantum motion of the object, the quantum nature of light, as well as scattering processes to all orders in perturbation theory are taken into account. This formalism extends the standard master equation approach to the case where interactions among different modes of the environment are considered. It yields a genuine quantum description, including a renormalization of the couplings and decoherence terms. We apply this approach to analyze cavity cooling of the center-of-mass mode of large spheres. Furthermore, we derive an expression for the steady-state phonon numbers without relying on resolved-sideband or bad-cavity approximations.Comment: 17 pages, 5 figure

    Linear Stability Analysis of a Levitated Nanomagnet in a Static Magnetic Field: Quantum Spin Stabilized Magnetic Levitation

    Full text link
    We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite of the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.Comment: Published version. 10 pages, 4 figures, 3 table

    Hybrid Architecture for Engineering Magnonic Quantum Networks

    Full text link
    We show theoretically that a network of superconducting loops and magnetic particles can be used to implement magnonic crystals with tunable magnonic band structures. In our approach, the loops mediate interactions between the particles and allow magnetic excitations to tunnel over long distances. As a result, different arrangements of loops and particles allow one to engineer the band structure for the magnonic excitations. Furthermore, we show how magnons in such crystals can serve as a quantum bus for long-distance magnetic coupling of spin qubits. The qubits are coupled to the magnets in the network by their local magnetic-dipole interaction and provide an integrated way to measure the state of the magnonic quantum network.Comment: Manuscript: 4 pages, 3 figures. Supplemental Material: 9 pages, 4 figures. V2: Published version in PRA: 14 pages + 8 figures. Substantial rearrangement of the content of the previous versio

    Quantum Spin Stabilized Magnetic Levitation

    Get PDF
    We theoretically show that, despite Earnshaw's theorem, a non-rotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein--de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.Comment: Published version. 5 pages, 2 figure

    Superconducting Vortex Lattices for Ultracold Atoms

    Full text link
    We propose and analyze a nanoengineered vortex array in a thin-film type-II superconductor as a magnetic lattice for ultracold atoms. This proposal addresses several of the key questions in the development of atomic quantum simulators. By trapping atoms close to the surface, tools of nanofabrication and structuring of lattices on the scale of few tens of nanometers become available with a corresponding benefit in energy scales and temperature requirements. This can be combined with the possibility of magnetic single site addressing and manipulation together with a favorable scaling of superconducting surface-induced decoherence.Comment: Published Version. Manuscript: 5 pages, 3 figures. Supplementary Information: 11 pages, 7 figure

    Transport and Entanglement Generation in the Bose-Hubbard Model

    Get PDF
    We study entanglement generation via particle transport across a one-dimensional system described by the Bose-Hubbard Hamiltonian. We analyze how the competition between interactions and tunneling affects transport properties and the creation of entanglement in the occupation number basis. Alternatively, we propose to use spatially delocalized quantum bits, where a quantum bit is defined by the presence of a particle either in a site or in the adjacent one. Our results can serve as a guidance for future experiments to characterize entanglement of ultracold gases in one-dimensional optical lattices.Comment: 14 pages, 6 figure

    On optical forces in spherical whispering gallery mode resonators

    Full text link
    In this paper we discuss the force exerted by the field of an optical cavity on a polarizable dipole. We show that the modification of the cavity modes due to interaction with the dipole significantly alters the properties of the force. In particular, all components of the force are found to be non-conservative, and cannot, therefore, be derived from a potential energy. We also suggest a simple generalization of the standard formulas for the optical force on the dipole, which reproduces the results of calculations based on the Maxwell stress tensor.Comment: To pe published in Optics Express Focus Issue: "Collective phenomena in photonic, plasmonic and hybrid structures

    Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects

    Full text link
    We propose a method to prepare and verify spatial quantum superpositions of a nanometer-sized object separated by distances of the order of its size. This method provides unprecedented bounds for objective collapse models of the wave function by merging techniques and insights from cavity quantum optomechanics and matter wave interferometry. An analysis and simulation of the experiment is performed taking into account standard sources of decoherence. We provide an operational parameter regime using present day and planned technology.Comment: 4 pages, 2 figures, to appear in PR
    corecore