17 research outputs found

    Effects of substitutions of glycine and asparagine for serine132 on activity and binding of human lipoprotein lipase to very low density lipoproteins

    Get PDF
    AbstractFor studying the role of Ser132 in the putative catalytic site of human lipoprotein lipase (LPL), mutant LPL cDNAs expressing LPLs with amino acid substitutions of Gly or Asn for Ser132 were obtained by site-directed mutagenesis, and were expressed in COS-1 cells. Considerable amounts of LPL enzyme protein mass were detected in the culture medium of COS-1 cells transfected with wild-type LPL, LPL-Gly132, or LPL-Asn132. LPL-Gly132 hydrolyzed Triton X-100-triolein and tributyrin as effectively as wild-type LPL, whereas LPL-Asn132 showed no activity. LPL-Asn132 bound to very low density lipoproteins as effectively as wild-type LPL

    Serum Apolipoprotein M Levels are Correlated with Biomarkers of Coagulation

    Get PDF
    Background:Apolipoprotein M (ApoM) is bound to high-density lipoprotein (HDL) in plasma, and HDL has anticoagulation effects. However, the association between ApoM and biomarkers of coagulation was unclear. Therefore, we investigated relationships between ApoM and biomarkers of coagulation. Methods: Serum samples from 233 Japanese participants including with diabetes mellitus, hypertension, dyslipidemia, or healthy controls were analyzed. Serum ApoM levels were measured using Enzyme-Linked Immuno-Sorbent Assay(ELISA). Results:Analysis of all 233 participants showed that ApoM levels were positively correlated with age (r=0.284, p<0.001), total cholesterol (TC;r=0.477, p<0.001), HDL-cholesterol (HDL-C;r=0.234, p<0.001) and lowdensity lipoprotein cholesterol (LDL-C;r=0.331, p<0.001). Higher ApoM levels were correlated with shorter activated partial thromboplastin time(APTT;r=-0.226,p=0.001) and prothrombin time(PT,%;r=0.326,p< 0.001). Separate analysis of the 115 healthy controls showed that ApoM levels were positively correlated with age, TC, HDL-C and LDL-C, and higher ApoM levels were correlated with shorter PT. Conclusion:Serum levels of ApoM may influence biomarkers of coagulation

    Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans.

    Get PDF
    Thermogenesis in brown adipose tissue (BAT) is an important component of energy expenditure in mammals. Recent studies have confirmed its presence and metabolic role in humans. Defining the physiological regulation of BAT is therefore of great importance for developing strategies to treat metabolic diseases. Here we show that the soluble form of the low-density lipoprotein receptor relative, LR11/SorLA (sLR11), suppresses thermogenesis in adipose tissue in a cell-autonomous manner. Mice lacking LR11 are protected from diet-induced obesity associated with an increased browning of white adipose tissue and hypermetabolism. Treatment of adipocytes with sLR11 inhibits thermogenesis via the bone morphogenetic protein/TGFβ signalling pathway and reduces Smad phosphorylation. In addition, sLR11 levels in humans are shown to positively correlate with body mass index and adiposity. Given the need for tight regulation of a tissue with a high capacity for energy wastage, we propose that LR11 plays an energy conserving role that is exaggerated in states of obesity.AW and AVP were supported by FP7 – BetaBAT, BBSRC (BB/J009865/1), the British Heart Foundation (PG/12/53/29714) and MDU MRC. MJ and HB were supported by Japan Health and Labour Sciences Research grant (H22-rinkensui-ippan-001) and Grants-in–aid for Scientific Research from Japanese Ministry of Education, Culture, Sports, Science and Technology (24390231 and 24790907). VP was supported by Wellcome Trust and the Cambridge Overseas Trust. JR was supported by Ministerio de Educación, through “Programa Nacional de Movilidad de Recursos Humanos del Plan Nacional de I-D+i 2008-2011 (Subprograma de Estancias de Movilidad en el Extranjero “José Castillejo” para jóvenes Doctores, ref: JC2011-0248). SV was supported by MRC. WJS was supported by the Austrian Science Fund (FWF P-20218 and P-20455). Animal work was performed at the MDU DMC Core facilities.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/ncomms995

    Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans

    Get PDF
    Thermogenesis in brown adipose tissue (BAT) is an important component of energy expenditure in mammals. Recent studies have confirmed its presence and metabolic role in humans. Defining the physiological regulation of BAT is therefore of great importance for developing strategies to treat metabolic diseases. Here we show that the soluble form of the low-density lipoprotein receptor relative, LR11/SorLA (sLR11), suppresses thermogenesis in adipose tissue in a cell-autonomous manner. Mice lacking LR11 are protected from diet-induced obesity associated with an increased browning of white adipose tissue and hypermetabolism. Treatment of adipocytes with sLR11 inhibits thermogenesis via the bone morphogenetic protein/TGFb signalling pathway and reduces Smad phosphorylation. In addition, sLR11 levels in humans are shown to positively correlate with body mass index and adiposity. Given the need for tight regulation of a tissue with a high capacity for energy wastage, we propose that LR11 plays an energy conserving role that is exaggerated in states of obesity
    corecore