195 research outputs found

    Cancer Genomics Identifies Regulatory Gene Networks Associated with the Transition from Dysplasia to Advanced Lung Adenocarcinomas Induced by c-Raf-1

    Get PDF
    Background: Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initialy dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. Methodology/Principal Findings: By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be upregulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionaly, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. Conclusions/Significance: This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity

    Real Estate valuation and forecasting in non-homogeneous markets: A case study in Greece during the financial crisis

    Get PDF
    In this paper we develop an automatic valuation model for property valuation using a large database of historical prices from Greece. The Greek property market is an inefficient, nonhomogeneous market, still at its infancy and governed by lack of information. As a result modelling the Greek real estate market is a very interesting and challenging problem. The available data cover a wide range of properties across time and include the financial crisis period in Greece which led to tremendous changes in the dynamics of the real estate market. We formulate and compare linear and non-linear models based on regression, hedonic equations and artificial neural networks. The forecasting ability of each method is evaluated out-of-sample. Special care is given on measuring the success of the forecasts but also on identifying the property characteristics that lead to large forecasting errors. Finally, by examining the strengths and the performance of each method we apply a combined forecasting rule to improve forecasting accuracy. Our results indicate that the proposed methodology constitutes an accurate tool for property valuation in a non-homogeneous, newly developed market
    corecore