63 research outputs found

    A promising inactivated whole-virion SARS-CoV-2 vaccine

    No full text

    Sequential Immunization with Universal Live Attenuated Influenza Vaccine Candidates Protects Ferrets against a High-Dose Heterologous Virus Challenge

    No full text
    The development of universal influenza vaccines has been a priority for more than 20 years. We conducted a preclinical study in ferrets of two sets of live attenuated influenza vaccines (LAIVs) expressing chimeric hemagglutinin (cHA). These vaccines contained the HA stalk domain from H1N1pdm09 virus but had antigenically unrelated globular head domains from avian influenza viruses H5N1, H8N4 and H9N2. The viral nucleoproteins (NPs) in the two sets of universal LAIV candidates were from different sources: one LAIV set contained NP from A/Leningrad/17 master donor virus (MDV), while in the other set this gene was from wild-type (WT) H1N1pdm09 virus, in order to better match the CD8 T-cell epitopes of currently circulating influenza A viruses. To avoid any difference in protective effect of the various anti-neuraminidase (NA) antibodies, all LAIVs were engineered to contain the NA gene of Len/17 MDV. Naïve ferrets were sequentially immunized with three doses of (i) classical LAIVs containing non-chimeric HA and NP from MDV (LAIVs (NP-MDV)); (ii) cHA-based LAIVs containing NP from MDV (cHA LAIVs (NP-MDV)); and (iii) cHA-based LAIVs containing NP from H1N1pdm09 virus (cHA LAIVs (NP-WT)). All vaccination regimens were safe, producing no significant increase in body temperature or weight loss, in comparison with the placebo group. The two groups of cHA-based vaccines induced a broadly reactive HA stalk-directed antibody, while classical LAIVs did not. A high-dose challenge with H1N1pdm09 virus induced significant pathology in the control, non-immunized ferrets, including high virus titers in respiratory tissues, clinical signs of disease and histopathological changes in nasal turbinates and lung tissues. All three vaccination regimens protected animals from clinical manifestations of disease: immunized ferrets did not lose weight or show clinical symptoms, and their fever was significantly lower than in the control group. Further analysis of virological and pathological data revealed the following hierarchy in the cross-protective efficacy of the vaccines: cHA LAIVs (NP-WT) > cHA LAIVs (NP-MDV) > LAIVs (NP-MDV). This ferret study showed that prototype universal cHA-based LAIVs are highly promising candidates for further clinical development

    Tackling a novel lethal virus: a focus on H7N9 vaccine development

    No full text
    Introduction: Avian-origin H7N9 influenza viruses first detected in humans in China in 2013 continue to cause severe human infections with a mortality rate close to 40%. These viruses are acknowledged as the subtype most likely to cause the next influenza pandemic. Areas covered: Here we review published data on the development of H7N9 influenza vaccine candidates and their evaluation in preclinical and clinical trials identified on PubMed database with the term ‘H7N9 influenza vaccine’. In addition, a search with the same term was done on ClinicalTrials.gov to find ongoing clinical trials with H7N9 vaccines. Expert commentary: Influenza vaccines are the most powerful tool for protecting the human population from influenza infections, both seasonal and pandemic. During the past four years, a large number of promising H7N9 influenza vaccine candidates have been generated using traditional and advanced gene engineering techniques. In addition, with the support of WHO’s GAP program, influenza vaccine production capacities have been established in a number of vulnerable low- and middle-income countries with a high population density, allowing the countries to be independent of vaccine supply from high-income countries. Overall, it is believed that the world is now well prepared for a possible H7N9 influenza pandemic

    Basics of CD8 T-cell immune responses after influenza infection and vaccination with inactivated or live attenuated influenza vaccine

    No full text
    Introduction: One of the essential mechanisms of virus infection control is cell-mediated cytotoxicity, which can act in an antibody-dependent or -independent fashion and is provided by different effector cells. The role of CD8 T-cells in infection control and in affecting the pathological outcome of different types of infection has been demonstrated in numerous animal studies. Despite this, their role in controlling human influenza infection is not fully understood. Especially, knowledge about their induction and turnover in human influenza infection is limited. Differences in the development of CD8 T-cells after influenza infection or immunizations should be explored in detail, in relation to the bioaccessibility of influenza antigens, site of application and distribution routes. Areas covered: This review focuses on the basics of CD8 T-cell immune response both in human influenza infection and after administration of inactivated or live attenuated influenza vaccine. Some aspects of the accessibility, distribution and presentation of influenza antigens to CD8 T-cells are described. Expert commentary: The CD8 T-cell response is an essential connection between innate and antibody-mediated responses, which are all-important for influenza control. We hypothesize that immunization with live influenza vaccine is the most straightforward artificial way to induce an efficient influenza-specific CD8 T-cell response

    Genotyping assay for differentiation of wild-type and vaccine viruses in subjects immunized with live attenuated influenza vaccine.

    No full text
    Live attenuated influenza vaccines (LAIVs) are considered as safe and effective tool to control influenza in different age groups, especially in young children. An important part of the LAIV safety evaluation is the detection of vaccine virus replication in the nasopharynx of the vaccinees, with special attention to a potential virus transmission to the unvaccinated close contacts. Conducting LAIV clinical trials in some geographical regions with year-round circulation of influenza viruses warrants the development of robust and reliable tools for differentiating vaccine viruses from wild-type influenza viruses in nasal pharyngeal wash (NPW) specimens of vaccinated subjects. Here we report the development of genotyping assay for the detection of wild-type and vaccine-type influenza virus genes in NPW specimens of young children immunized with Russian-backbone seasonal trivalent LAIV using Sanger sequencing from newly designed universal primers. The new primer set allowed amplification and sequencing of short fragments of viral genes in NPW specimens and appeared to be more sensitive than conventional real-time RT-PCR protocols routinely used for the detection and typing/subtyping of influenza virus in humans. Furthermore, the new assay is capable of defining the origin of wild-type influenza virus through BLAST search with the generated sequences of viral genes fragments

    Live attenuated influenza vaccine viral vector induces functional cytotoxic T-cell immune response against foreign CD8+ T-cell epitopes inserted into NA and NS1 genes using the 2A self-cleavage site

    No full text
    The development of viral vector vaccines against various pathogens for which conventional vaccination approaches are not applicable has been a priority for a number of years. One promising approach is the insertion of immunodominant conservative cytotoxic T-cell (CTL) epitopes into the genome of a viral vector, which then delivers these epitopes to target cells, inducing immunity. Many different viruses have been assessed as viral vectors for CTL-based vaccines, but only a few of them are clinically relevant, mainly because of safety issues and limited knowledge about their performance in humans. In this regard, the use of licensed cold-adapted live attenuated influenza vaccine (LAIV) viruses as a vector delivery system has clear advantages for CTL-based vector vaccines against other respiratory pathogens: LAIV is known to induce all arms of the adaptive immune system and is administered via nasal spray, and its production process is relatively easy and inexpensive. Here we present the first results of the use of an LAIV backbone for designing a CTL epitope-based vaccine against respiratory syncytial virus (RSV). The chimeric LAIV-RSV vaccine candidates were attenuated in mice and induced strong, fully functional CTL immunity in this animal model

    In Vitro Stimulation with Live SARS-CoV-2 Suggests Th17 Dominance In Virus-Specific CD4+ T Cell Response after COVID-19

    No full text
    The SARS-CoV-2 and influenza viruses are the main causes of human respiratory tract infections with similar disease manifestation but distinct mechanisms of immunopathology and host response to the infection. In this study, we investigated the SARS-CoV-2-specific CD4+ T cell phenotype in comparison with H1N1 influenza-specific CD4+ T cells. We determined the levels of SARS-CoV-2- and H1N1-specific CD4+ T cell responses in subjects recovered from COVID-19 one to 15 months ago by stimulating PBMCs with live SARS-CoV-2 or H1N1 influenza viruses. We investigated phenotypes and frequencies of main CD4+ T cell subsets specific for SARS-CoV-2 using an activation induced cell marker assay and multicolor flow cytometry, and compared the magnitude of SARS-CoV-2- and H1N1-specific CD4+ T cells. SARS-CoV-2-specific CD4+ T cells were detected 1–15 months post infection and the frequency of SARS-CoV-2-specific central memory CD4+ T cells was increased with the time post-symptom onset. Next, SARS-CoV-2-specific CD4+ T cells predominantly expressed the Th17 phenotype, but the level of Th17 cells in this group was lower than in H1N1-specific CD4+ T cells. Finally, we found that the lower level of total Th17 subset within total SARS-CoV-2-specific CD4+ T cells was linked with the low level of CCR4+CXCR3– ‘classical’ Th17 cells if compared with H1N1-specific Th17 cells. Taken together, our data suggest the involvement of Th17 cells and their separate subsets in the pathogenesis of SARS-CoV-2- and influenza-induced pneumonia; and a better understanding of Th17 mediated antiviral immune responses may lead to the development of new therapeutic strategies

    Assessment of Immunogenic and Antigenic Properties of Recombinant Nucleocapsid Proteins of Five SARS-CoV-2 Variants in a Mouse Model

    No full text
    COVID-19 cases caused by new variants of highly mutable SARS-CoV-2 continue to be identified worldwide. Effective control of the spread of new variants can be achieved through targeting of conserved viral epitopes. In this regard, the SARS-CoV-2 nucleocapsid (N) protein, which is much more conserved than the evolutionarily influenced spike protein (S), is a suitable antigen. The recombinant N protein can be considered not only as a screening antigen but also as a basis for the development of next-generation COVID-19 vaccines, but little is known about induction of antibodies against the N protein via different SARS-CoV-2 variants. In addition, it is important to understand how antibodies produced against the antigen of one variant can react with the N proteins of other variants. Here, we used recombinant N proteins from five SARS-CoV-2 strains to investigate their immunogenicity and antigenicity in a mouse model and to obtain and characterize a panel of hybridoma-derived monoclonal anti-N antibodies. We also analyzed the variable epitopes of the N protein that are potentially involved in differential recognition of antiviral antibodies. These results will further deepen our knowledge of the cross-reactivity of the humoral immune response in COVID-19
    corecore