305 research outputs found

    Molecular imaging of tumor-associated angiogenesis using a novel magnetic resonance imaging contrast agent targeting αvβ3 integrin

    Get PDF
    The recent introduction of biological anticancer therapy has renewed the interest in functional imaging of tumor-associated angiogenesis (TAA) as a tool to monitor early therapy response. The present study evaluated imaging of TAA using P1227, a novel, small molecular magnetic resonance imaging (MRI) probe targeting alpha(v)beta(3) integrin. HT29 human colorectal cancers were grown in athymic mice. Dynamic MRI was performed using a three-dimensional VIBE sequence up to 110 min after injection of P1227 or gadolinium-tetraazacyclododecane tetraacetic acid (Gd-DOTA). Specificity was assessed by using P1227 1 h after intravenous administration of the alpha(v)beta(3) inhibitor cilengitide. Regions of interest were drawn encompassing the tumor rim and normal muscle. Imaging data were compared with microvessel density and alpha(v)beta(3) expression. Using P1227, specific enhancement of the angiogenic tumor rim, but not of normal muscle, was observed, whereas Gd-DOTA enhanced tumor and normal muscle. After administering cilengitide, enhancement with P1227, but not with DOTA, was significantly suppressed during the first 20 min. When using P1227, a significant correlation was observed between normalized enhancement of the tumor rim and immunohistochemical alpha(v)beta(3) integrin expression. Molecular MRI using a small monogadolinated tracer targeting alpha(v)beta(3) integrin and moderate magnetic field strength holds promise in assessing colorectal TAA

    Understanding the Foreign Subsidies Regulation

    Get PDF

    Coexpression and interaction of CXCL10 and CD26 in mesenchymal cells by synergising inflammatory cytokines: CXCL8 and CXCL10 are discriminative markers for autoimmune arthropathies

    Get PDF
    Leukocyte infiltration during acute and chronic inflammation is regulated by exogenous and endogenous factors, including cytokines, chemokines and proteases. Stimulation of fibroblasts and human microvascular endothelial cells with the inflammatory cytokines interleukin-1β (IL-1β) or tumour necrosis factor alpha (TNF-α) combined with either interferon-α (IFN-α), IFN-β or IFN-γ resulted in a synergistic induction of the CXC chemokine CXCL10, but not of the neutrophil chemoattractant CXCL8. In contrast, simultaneous stimulation with different IFN types did not result in a synergistic CXCL10 protein induction. Purification of natural CXCL10 from the conditioned medium of fibroblasts led to the isolation of CD26/dipeptidyl peptidase IV-processed CXCL10 missing two NH(2)-terminal residues. In contrast to intact CXCL10, NH(2)-terminally truncated CXCL10(3–77) did not induce extracellular signal-regulated kinase 1/2 or Akt/protein kinase B phosphorylation in CXC chemokine receptor 3-transfected cells. Together with the expression of CXCL10, the expression of membrane-bound CD26/dipeptidyl peptidase IV was also upregulated in fibroblasts by IFN-γ, by IFN-γ plus IL-1β or by IFN-γ plus TNF-α. This provides a negative feedback for CXCL10-dependent chemotaxis of activated T cells and natural killer cells. Since TNF-α and IL-1β are implicated in arthritis, synovial concentrations of CXCL8 and CXCL10 were compared in patients suffering from crystal arthritis, ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. All three groups of autoimmune arthritis patients (ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis) had significantly increased synovial CXCL10 levels compared with crystal arthritis patients. In contrast, compared with crystal arthritis, only rheumatoid arthritis patients, and not ankylosing spondylitis or psoriatic arthritis patients, had significantly higher synovial CXCL8 concentrations. Synovial concentrations of the neutrophil chemoattractant CXCL8 may therefore be useful to discriminate between autoimmune arthritis types

    Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation

    Get PDF
    Biological functions of proteins are influenced by posttranslational modifications such as on/off switching by phosphorylation and modulation by glycosylation. Proteolytic processing regulates cytokine and chemokine activities. In this study, we report that natural posttranslational citrullination or deimination alters the biological activities of the neutrophil chemoattractant and angiogenic cytokine CXCL8/interleukin-8 (IL-8). Citrullination of arginine in position 5 was discovered on 14% of natural leukocyte-derived CXCL8(1–77), generating CXCL8(1–77)Cit5. Peptidylarginine deiminase (PAD) is known to citrullinate structural proteins, and it may initiate autoimmune diseases. PAD efficiently and site-specifically citrullinated CXCL5, CXCL8, CCL17, CCL26, but not IL-1β. In comparison with CXCL8(1–77), CXCL8(1–77)Cit5 had reduced affinity for glycosaminoglycans and induced less CXCR2-dependent calcium signaling and extracellular signal-regulated kinase 1/2 phosphorylation. In contrast to CXCL8(1–77), CXCL8(1–77)Cit5 was resistant to thrombin- or plasmin-dependent potentiation into CXCL8(6–77). Upon intraperitoneal injection, CXCL8(6–77) was a more potent inducer of neutrophil extravasation compared with CXCL8(1–77). Despite its retained chemotactic activity in vitro, CXCL8(1–77)Cit5 was unable to attract neutrophils to the peritoneum. Finally, in the rabbit cornea angiogenesis assay, the equally potent CXCL8(1–77) and CXCL8(1–77)Cit5 were less efficient angiogenic molecules than CXCL8(6–77). This study shows that PAD citrullinates the chemokine CXCL8, and thus may dampen neutrophil extravasation during acute or chronic inflammation

    Biological Activity of CXCL8 Forms Generated by Alternative Cleavage of the Signal Peptide or by Aminopeptidase-Mediated Truncation

    Get PDF
    Posttranslational modification of chemokines is one of the mechanisms that regulate leukocyte migration during inflammation. Multiple natural NH(2)-terminally truncated forms of the major human neutrophil attractant interleukin-8 or CXCL8 have been identified. Although differential activity was reported for some CXCL8 forms, no biological data are available for others.status: publishe

    Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyr-based motif

    Get PDF
    Clathrin-mediated endocytosis (CME) and its core endocytic machinery are evolutionarily conserved across all eukaryotes. In mammals, the heterotetrameric adaptor protein complex-2 (AP-2) sorts plasma membrane (PM) cargoes into vesicles through the recognition of motifs based on tyrosine or di-leucine in their cytoplasmic tails. However, in plants, very little is known on how PM proteins are sorted for CME and whether similar motifs are required. In Arabidopsis thaliana, the brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), undergoes endocytosis that depends on clathrin and AP-2. Here we demonstrate that BRI1 binds directly to the medium AP-2 subunit, AP2M. The cytoplasmic domain of BRI1 contains five putative canonical surface-exposed tyrosine-based endocytic motifs. The tyrosine-to-phenylalanine substitution in Y898KAI reduced BRI1 internalization without affecting its kinase activity. Consistently, plants carrying the BRI1Y898F mutation were hypersensitive to BRs. Our study demonstrates that AP-2-dependent internalization of PM proteins via the recognition of functional tyrosine motifs also operates in plants

    Sargramostim to treat patients with acute hypoxic respiratory failure due to COVID-19 (SARPAC) : a structured summary of a study protocol for a randomised controlled trial

    Get PDF
    ObjectivesThe hypothesis of the proposed intervention is that Granulocyte-macrophage colony-stimulating factor (GM-CSF) has profound effects on antiviral immunity, and can provide the stimulus to restore immune homeostasis in the lung with acute lung injury post COVID-19, and can promote lung repair mechanisms, that lead to a 25% improvement in lung oxygenation parameters. Sargramostim is a man-made form of the naturally-occurring protein GM-CSF.Trial designA phase 4 academic, prospective, 2 arm (1:1 ratio), randomized, open-label, controlled trial.ParticipantsPatients aged 18-80 years admitted to specialized COVID-19 wards in 5 Belgian hospitals with recent ( 20 mg methylprednisolone or equivalent), (6) enrolment in another investigational study, (7) pregnant or breastfeeding or (8) ferritin levels > 2000 mu g/mL.Intervention and comparatorInhaled sargramostim 125 mu g twice daily for 5 days in addition to standard care. Upon progression of disease requiring mechanical ventilation or to acute respiratory distress syndrome (ARDS) and initiation of mechanical ventilator support within the 5 day period, inhaled sargramostim will be replaced by intravenous sargramostim 125 mu g/m(2) body surface area once daily until the 5 day period is reached. From day 6 onwards, progressive patients in the active group will have the option to receive an additional 5 days of IV sargramostim, based on the treating physician's assessment. Intervention will be compared to standard of care. Subjects progressing to ARDS and requiring invasive mechanical ventilatory support, from day 6 onwards in the standard of care group will have the option (clinician's decision) to initiate IV sargramostim 125m mu g/m(2) body surface area once daily for 5 days.Main outcomesThe primary endpoint of this intervention is measuring oxygenation after 5 days of inhaled (and intravenous) treatment through assessment of a change in pretreatment and post-treatment ratio of PaO2/FiO(2) and through measurement of the P(A-a)O-2 gradient (PAO(2)= Partial alveolar pressure of oxygen, PaO2=Partial arterial pressure of oxygen; FiO(2)= Fraction of inspired oxygen).RandomisationPatients will be randomized in a 1:1 ratio. Randomization will be done using REDCap (electronic IWRS system).Blinding (masking)In this open-label trial neither participants, caregivers, nor those assessing the outcomes will be blinded to group assignment.Numbers to be randomised (sample size)A total of 80 patients with confirmed COVID-19 and acute hypoxic respiratory failure will be enrolled, 40 in the active and 40 in the control group.Trial StatusSARPAC protocol Version 2.0 (April 15 2020). Participant recruitment is ongoing in 5 Belgian Hospitals (i.e. University Hospital Ghent, AZ Sint-Jan Bruges, AZ Delta Roeselare, University Hospital Brussels and ZNA Middelheim Antwerp). Participant recruitment started on March 26(th) 2020. Given the current decline of the COVID-19 pandemic in Belgium, it is difficult to anticipate the rate of participant recruitment.Trial registrationThe trial was registered on Clinical Trials.gov on March 30(th), 2020 (ClinicalTrials.gov Identifier: NCT04326920) - retrospectively registered; https://clinicaltrials.gov/ct2/show/NCT04326920?term=sarpac&recrs=ab&draw=2&rank=1 and on EudraCT on March 24th, 2020 (Identifier: 2020-001254-22).Full protocolThe full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol

    Treatment of severely ill COVID-19 patients with anti-interleukin drugs (COV-AID) : a structured summary of a study protocol for a randomised controlled trial

    Get PDF
    ObjectivesThe purpose of this study is to test the safety and effectiveness of individually or simultaneously blocking IL-6, IL-6 receptor and IL-1 versus standard of care on blood oxygenation and systemic cytokine release syndrome in patients with COVID-19 coronavirus infection and acute hypoxic respiratory failure and systemic cytokine release syndrome.Trial designA phase 3 prospective, multi-center, interventional, open label, 6-arm 2x2 factorial design study.ParticipantsSubjects will be recruited at the specialized COVID-19 wards and/or ICUs at 16 Belgian participating hospitals. Only adult (>= 18y old) patients will be recruited with recent (<= 16 days) COVID-19 infection and acute hypoxia (defined as PaO2/FiO2 below 350mmHg or PaO2/FiO2 below 280 on supplemental oxygen and immediately requiring high flow oxygen device or mechanical ventilation) and signs of systemic cytokine release syndrome characterized by high serum ferritin, or high D-dimers, or high LDH or deep lymphopenia or a combination of those, who have not been on mechanical ventilation for more than 24 hours before randomisation. Patients should have had a chest X-ray and/or CT scan showing bilateral infiltrates within the last 2 days before randomisation. Patients with active bacterial or fungal infection will be excluded.Intervention and comparatorPatients will be randomized to 1 of 5 experimental arms versus usual care. The experimental arms consist of Anakinra alone (anti-IL-1 binding the IL-1 receptor), Siltuximab alone (anti-IL-6 chimeric antibody), a combination of Siltuximab and Anakinra, Tocilizumab alone (humanised anti-IL-6 receptor antibody) or a combination of Anakinra with Tocilizumab in addition to standard care. Patients treated with Anakinra will receive a daily subcutaneous injection of 100mg for a maximum of 28 days or until hospital discharge, whichever comes first. Siltuximab (11mg/kg) or Tocilizumab (8mg/kg, with a maximum dose of 800mg) are administered as a single intravenous injection immediately after randomization.Main outcomesThe primary end point is the time to clinical improvement defined as the time from randomization to either an improvement of two points on a six-category ordinal scale measured daily till day 28 or discharge from the hospital or death. This ordinal scale is composed of (1) Death; (2) Hospitalized, on invasive mechanical ventilation or ECMO; (3) Hospitalized, on non-invasive ventilation or high flow oxygen devices; (4) Hospitalized, requiring supplemental oxygen; (5) Hospitalized, not requiring supplemental oxygen; (6) Not hospitalized.RandomisationPatients will be randomized using an Interactive Web Response System (REDCap). A 2x2 factorial design was selected with a 2:1 randomization regarding the IL-1 blockade (Anakinra) and a 1:2 randomization regarding the IL-6 blockade (Siltuximab and Tocilizumab).Blinding (masking)In this open-label trial neither participants, caregivers, nor those assessing the outcomes are blinded to group assignment.Numbers to be randomised (sample size)A total of 342 participants will be enrolled: 76 patients will receive usual care, 76 patients will receive Siltuximab alone, 76 patients will receive Tocilizumab alone, 38 will receive Anakinra alone, 38 patients will receive Anakinra and Siltuximab and 38 patients will receive Anakinra and Tocilizumab.Trial StatusCOV-AID protocol version 3.0 (15 Apr 2020). Participant recruitment is ongoing and started on April 4(th) 2020. Given the current decline of the COVID-19 pandemic in Belgium, it is difficult to anticipate the rate of participant recruitment.Trial registrationThe trial was registered on Clinical Trials.gov on April 1st, 2020 (ClinicalTrials.gov Identifier: NCT04330638) and on EudraCT on April 3rd 2020 (Identifier: 2020-001500-41).Full protocolThe full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol
    corecore