55 research outputs found

    The CADM1 tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11.

    Get PDF
    Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis leading to peripheral cytopenias and in a substantial proportion of cases to acute myeloid leukemia. The deletion of the long arm of chromosome 11, del(11q), is a rare but recurrent clonal event in MDS. Here, we detail the largest series of 113 cases of MDS and myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) harboring a del(11q) analyzed at clinical, cytological, cytogenetic, and molecular levels. Female predominance, a survival prognosis similar to other MDS, a low monocyte count, and dysmegakaryopoiesis were the specific clinical and cytological features of del(11q) MDS. In most cases, del(11q) was isolated, primary and interstitial encompassing the 11q22-23 region containing ATM, KMT2A, and CBL genes. The common deleted region at 11q23.2 is centered on an intergenic region between CADM1 (also known as Tumor Suppressor in Lung Cancer 1) and NXPE2. CADM1 was expressed in all myeloid cells analyzed in contrast to NXPE2. At the functional level, the deletion of Cadm1 in murine Lineage-Sca1+Kit+ cells modifies the lymphoid-to-myeloid ratio in bone marrow, although not altering their multilineage hematopoietic reconstitution potential after syngenic transplantation. Together with the frequent simultaneous deletions of KMT2A, ATM, and CBL and mutations of ASXL1, SF3B1, and CBL, we show that CADM1 may be important in the physiopathology of the del(11q) MDS, extending its role as tumor-suppressor gene from solid tumors to hematopoietic malignancies

    Refinement of 1p36 Alterations Not Involving PRDM16 in Myeloid and Lymphoid Malignancies

    Get PDF
    Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis

    Restriction of Measles Virus RNA Synthesis by a Mouse Host Cell Line: trans-Complementation by Polymerase Components or a Human Cellular Factor(s)

    No full text
    The mouse epithelial MODE-K cell line expressing human CD46 or CD150 cellular receptors was found to be nonpermissive for measles virus (MV) replication. The virus binding and membrane fusion steps were unimpaired, but only very limited amounts of virus protein and RNA synthesized were detected after the infection. In a minigenome chloramphenicol acetyltransferase assay, MODE-K cells were as able as the permissive HeLa cells in supporting MV polymerase activity. The restriction phenotype of MODE-K cells could be alleviated by providing, in trans, either N-P-L or N-P functional protein complexes but not by P-L complexes or individual N, P, and L proteins. Several human × mouse (HeLa × MODE-K) somatic hybrid clones expressing human CD46 were isolated and found to be either nonpermissive or permissive according to their human chromosomal contents. The MV-restricted phenotype exhibited by the MODE-K cell line suggests that a cellular factor(s) can control MV transcription, possibly by stabilizing the incoming virus polymerase templates

    Case report: Purulent transformation of granulocytic sarcoma: An unusual pattern of differentiation in acute promyelocytic leukemia.

    No full text
    RATIONALE: Acute promyelocytic leukemia (APL) is a curable subtype of acute myeloid leukemia. APL is currently treated with combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) resulting in the induction of apoptosis and differentiation of the leukemic cells. Differentiation syndrome (so-called ATRA syndrome) is the main life-threatening complication of induction therapy with these differentiating agents. PATIENT CONCERNS: Herein, we report the case of a 49-year-old woman diagnosed with APL with, concomitantly, a bulky cutaneous lesion of 10 cm diameter with a red-to-purple background and a necrotic center, localized on her abdomen. DIAGNOSES: After 10 days of treatment, the cutaneous lesion became purulent. Fluorescence in situ hybridization (FISH) analysis performed on this pus confirmed the presence of malignant features in the involved granulocytes proving their origin from the differentiation of leukemic APL cells, as all the analyzed nuclei showed 2 promyelocytic leukemia (PML)-retinoic acid receptor-a (RARA) fusions signals. INTERVENTION: The association by ATRA and ATO was continued. OUTCOME: Eventually, the evolution was favorable with healing in three weeks. LESSONS: This case report therefore highlights the differentiation phenomenon of promyelocytic blasts within promyelocytic sarcoma with the ATRA-ATO combination and the efficacy of this drug association in resolving both the malignant sarcoma and a secondary local infection

    Minimally differentiated acute myeloid leukemia (FAB AML-M0): prognostic factors and treatment effects on survival--a retrospective study of 42 adult cases.

    No full text
    International audienceData from 42 adult patients with newly diagnosed minimally differentiated (M0) acute myeloid leukemia (AML) were reported. Clinical and biological characteristics at diagnosis were heterogenous. All patients received induction chemotherapy combining an anthracycline with cytarabine. Complete remission (CR) was achieved in 22 cases (52%). Most patients received continuation chemotherapy. Median disease-free survival (DFS) was 13.6 months with a 2-year survival rate of 28%. As post-remission therapy, 7 patients could be allografted and showed an encouraging outcome. Overall, 14 patients have relapsed (63%) after a median time of 10.2 months. Median overall survival (OS) was 20.5 months with a 5-year survival rate of 18%. This retrospective analysis points to a somewhat heterogenous group of AML in terms of biological features and outcome, and warrants a larger multicenter study with study in molecular biology to clarify treatment effects further

    Major molecular response achievement in CML Patients can be predicted by BCR-ABL1/ABL1 or BCR-ABL1/GUS ratio at an earlier time point of follow-up than currently recommended.

    No full text
    Recent studies demonstrate that early molecular response to tyrosine-kinase inhibitors is strongly predictive of outcome in chronic myeloid leukemia patients and that early response landmarks may identify patients at higher risk for transformation who would benefit from an early switch to second-line therapy. In this study, we evaluated the ability of the control gene GUS to identify relevant thresholds for known therapeutic decision levels (BCR-ABL1/ABL1IS  = 10% and 0.1%). We then defined the most relevant cut-offs for early molecular response markers (transcript level at 3 months, halving time and log reduction between diagnosis and 3 months of treatment) using GUS or ABL1. We demonstrated that, although both control genes could be used (in an equivalent way) to accurately assess early molecular response, the BCR-ABL1/GUS level at diagnosis is impacted by the higher GUS copy number over-expressed in CML cells, thus negatively impacting its ability to completely replace ABL1 at diagnosis. Furthermore, we pointed out, for the first time, that it would be helpful to monitor BCR-ABL1 levels at an earlier time point than that currently performed, in order to assess response to first-line tyrosine-kinase inhibitors and consider a potential switch of therapy as early as possible. We evaluated this optimal time point as being 19 days after the start of treatment in our cohort
    corecore