7 research outputs found

    Amyotrophic lateral sclerosis associated with a pathological expansion in the ATXN7 gene

    No full text
    International audienceSpinocerebellar ataxia type 7 (SCA7) is an autosomal dominant hereditary neurodegenerative disease caused by the expansion of a CAG-repeat in the ataxin-7 (ATXN7) gene, usually characterized by progressive cerebellar ataxia and retinal dystrophy. We report the case of a 45-year-old woman presenting with a rapid-onset amyotrophic lateral sclerosis (ALS) phenotype associated with a 39-CAG-repeat expansion in ATXN7. This patient had neither ataxia nor retinal dystrophy, but she had an oculomotor cerebellar syndrome and a family history suggestive of SCA7. In SCA7, shorter expansions may be associated with less severe and incomplete clinical phenotypes, which could explain the patient's phenotype. Unknown genetic and environmental factors may also influence the patient's phenotype. We suggest that a pathological expansion in ATXN7 should be considered in cases of ALS-like phenotype, particularly when associated with oculomotor abnormalities or a family history of ataxia or blindness

    Expanding the phenotype of sca19/22: parkinsonism, cognitive impairment and epilepsy

    No full text
    International audienceBACKGROUND: Spinocerebellar ataxia types 19 and 22 (SCA19/22) are rare conditions in which relatively isolated cerebellar involvement is frequently associated with cognitive impairment. Here, we report on new clinical features and provide details of the cognitive profile in two SCA19/22 families.METHODS: Two families displaying an autosomal-dominant form of cerebellar ataxia underwent clinical examinations and genetic testing.RESULTS: In addition to the classical clinical features of SCA, a wide spectrum of cognitive disorders (including visuospatial impairments) was observed. Eight patients had mild Parkinsonism, and five had epilepsy. Genetic testing showed that the KCND3 mutation (c.679_681delTTC, p.F227del) was present in both families.CONCLUSIONS: Our findings broaden the phenotypic spectrum of SCA19/22, and suggest that KCND3 should be included in the list of candidate genes for epilepsy, Parkinsonism and cognitive impairment

    Les mutations du gène TMEM240 provoquent l'ataxie spinocérébelleuse 21 avec un retard mental et des troubles cognitifs sévères

    No full text
    International audienceAutosomal dominant cerebellar ataxia corresponds to a clinically and genetically heterogeneous group of neurodegenerative disorders that primarily affect the cerebellum. Here, we report the identification of the causative gene in spinocerebellar ataxia 21, an autosomal-dominant disorder previously mapped to chromosome 7p21.3-p15.1. This ataxia was firstly characterized in a large French family with slowly progressive cerebellar ataxia, accompanied by severe cognitive impairment and mental retardation in two young children. Following the recruitment of 12 additional young family members, linkage analysis enabled us to definitively map the disease locus to chromosome 1p36.33-p36.32. The causative mutation, (c.509C4T/p.P170L) in the transmembrane protein gene TMEM240, was identified by whole exome sequencing and then was confirmed by Sanger sequencing and co-segregation analyses. Index cases from 368 French families with autosomal-dominant cerebellar ataxia were also screened for mutations. In seven cases, we identified a range of missense mutations (c.509C4T/p.P170L, c.239C4T/p.T80M, c.346C4T/p.R116C, c.445G4A/p.E149K, c.511C4T/p.R171W), and a stop mutation (c.489C4G/p.Y163*) in the same gene. TMEM240 is a small, strongly conserved transmembrane protein of unknown function present in cerebellum and brain. Spinocerebellar ataxia 21 may be a particular early-onset disease associated with severe cognitive impairment
    corecore