18 research outputs found

    Discrimination between two different grades of human glioma based on blood vessel infrared spectral imaging

    Get PDF
    Gliomas are brain tumours classified into four grades with increasing malignancy from I to IV. The development and the progression of malignant glioma largely depend on the tumour vascularization. Due to their tissue heterogeneity, glioma cases can be difficult to classify into a specific grade using the gold standard of histological observation, hence the need to base classification on a quantitative and reliable analytical method for accurately grading the disease. Previous works focused specifically on vascularization study by Fourier transform infrared (FTIR) spectroscopy, proving this method to be a way forward to detect biochemical changes in the tumour tissue not detectable by visual techniques. In this project, we employed FTIR imaging using a focal plane array (FPA) detector and globar source to analyse large areas of glioma tumour tissue sections via molecular fingerprinting in view of helping to define markers of the tumour grade. Unsupervised multivariate analysis (hierarchical cluster analysis and principal component analysis) of blood vessel spectral data, retrieved from the FPA images, revealed the fine structure of the borderline between two areas identified by a pathologist as grades III and IV. Spectroscopic indicators are found capable of discriminating different areas in the tumour tissue and are proposed as biomolecular markers for potential future use of grading gliomas. Graphical Abstract Infrared imaging of glioma blood vessels provides a means to revise the pathologists' line of demarcation separating grade III (GIII) from grade IV (GIV) parts

    FTIR spectroscopic metabolome analysis of lyophilized and fresh Saccharomyces cerevisiae yeast cells

    Get PDF
    The yeast Saccharomyces cerevisiae is widely used as a biological eukaryotic model and also serves as a production organism in biotechnology. One of the methods used to avoid degradation of the yeast cell content is lyophilization. The use of lyophilized yeast cells has several advantages over fresh ones: samples can be easily transported and/or stored and variations of their metabolomic profiles do not occur during transport or storage. Fourier transform infrared (FTIR) spectroscopy is one of the most emerging approaches in modern biology that permits operation on very small quantities of whole cells without the need for extractions or purifications. This technique is very sensitive and not only allows the discrimination between different cell genotypes but also between different growth conditions. FTIR spectra provide interesting data on the metabolic status of the whole cell. Modern multivariate data processing was applied to analyse live fresh or lyophilized S. cerevisiae cells from different growth media. This study clearly demonstrates that yeast cells coming from an identical biological medium can be used indiscriminately for FTIR analysis whether they are analysed directly as live fresh cells or after lyophilization which is a freeze-drying process. Moreover, FTIR data obtained using lyophilized cells showed less variability.Fil: Correa Garcia, Susana Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Bermudez Moretti, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Travo, Adrian. Universite de Bordeaux; FranciaFil: Deleris, Gerard. Universite de Bordeaux; FranciaFil: Forfar, Isabelle. Universite de Bordeaux; Franci

    Synthesis and in vitro cytostatic activity of new beta-D-arabino furan[1',2':4,5]oxazolo- and arabino-pyrimidinone derivatives

    No full text
    A series of nucleoside derivatives was obtained via heteroatom annulation of the amino oxazoline of D-(-)-arabinose. Unequivocal proofs for the stereostructure of some new arabinosyl pyrimidinone derivatives were obtained by X-ray structure analysis. These newly synthesized compounds were then evaluated for their cytostatic activity against murine leukemia (L1210), and human T-lymphocytes (Molt 4/C8 and CEM). Of all the compounds in the series, the protected silylated tricyclic fused pyrimidinone 10 showed the most significant antitumor activity against murine leukemia L1210 (IC(50)=6 microM), and human T-lymphocytes cells Molt 4/C8 (IC(50)=7.9 microM) and CEM/0 cell lines (IC(50)=7.5 microM). None of the compounds exhibited significant antiviral inhibitory activities.status: publishe

    Synthesis of Omeprazole Analogues and Evaluation of These as Potential Inhibitors of the Multidrug Efflux Pump NorA of Staphylococcus aureus

    No full text
    A series of 11 pyrrolo[1,2-a]quinoxaline derivatives, 1a to 1k, sharing structural analogies with omeprazole, a eukaryotic efflux pump inhibitor (EPI) used as an antiulcer agent, was synthesized. Their inhibitory effect was evaluated using Staphylococcus aureus strain SA-1199B overexpressing NorA. By determinations of the MIC of norfloxacin in the presence of these EPIs devoid of intrinsic antibacterial activity and used at 128 μg/ml, and by the checkerboard method, compound 1e (MIC decrease, 16-fold; fractional inhibitory concentration index [ΣFIC], 0.18) appeared to be more active than compounds 1b to 1d, reserpine, and omeprazole (MIC decrease, eightfold; ΣFIC, 0.31), followed by compounds 1a and 1f (MIC decrease, fourfold; ΣFIC, 0.37) and 1g to 1k (MIC decrease, twofold; ΣFIC, 0.50 to 0.56). By time-kill curves combining norfloxacin (1/4 MIC) and the most efficient EPIs (128 μg/ml), compound 1e persistently restored the bactericidal activity of norfloxacin (inoculum reduction, 3 log(10) CFU/ml at 8 and 24 h), compound 1f led to a delayed but progressive decrease in the number of viable cells, and compounds 1b to 1d and omeprazole acted synergistically (inoculum reduction, 3 log(10) CFU/ml at 8 h but further regrowth), while compound 1a and reserpine slightly enhanced norfloxacin activity. The bacterial uptake of norfloxacin monitored by high-performance liquid chromatography confirmed that compounds 1a to 1f increased antibiotic accumulation, as did reserpine and omeprazole. Since these EPIs did not disturb the Δψ and ΔpH, they might directly interact with the pump. A structure-activity relationships study identified the benzimidazole nucleus of omeprazole as the main structural element involved in efflux pump inhibition and highlighted the critical role of the chlorine substituents in the stability and efficiency of compounds 1e to 1f. However, further pharmacomodulation is required to obtain therapeutically applicable derivatives

    Probing the role of the covalent linkage of ferrocene into a chloroquine template

    No full text
    A new therapeutic approach to malaria led to the discovery of ferroquine (FQ). To assess the importance of the linkage of the ferrocenyl group to a 4-aminoquinoline scaffold, two series of 4-aminoquinolines, structurally related to FQ, were synthesized. Evaluation of antimalarial activity, physicochemical parameters, and Β-hematin inhibition property indicate that the ferrocene moiety has to be covalently flanked by a 4-aminoquinoline and an alkylamine. Current data reinforced our choice of FQ as a drug candidate

    Decrease of Pdzrn3 is required for heart maturation and protects against heart failure

    No full text
    International audienceAbstract Heart failure is the final common stage of most cardiopathies. Cardiomyocytes (CM) connect with others via their extremities by intercalated disk protein complexes. This planar and directional organization of myocytes is crucial for mechanical coupling and anisotropic conduction of the electric signal in the heart. One of the hallmarks of heart failure is alterations in the contact sites between CM. Yet no factor on its own is known to coordinate CM polarized organization. We have previously shown that PDZRN3, an ubiquitine ligase E3 expressed in various tissues including the heart, mediates a branch of the Planar cell polarity (PCP) signaling involved in tissue patterning, instructing cell polarity and cell polar organization within a tissue. PDZRN3 is expressed in the embryonic mouse heart then its expression dropped significantly postnatally corresponding with heart maturation and CM polarized elongation. A moderate CM overexpression of Pdzrn3 ( Pdzrn3 OE) during the first week of life, induced a severe eccentric hypertrophic phenotype with heart failure. In models of pressure-overload stress heart failure, CM-specific Pdzrn3 knockout showed complete protection against degradation of heart function. We reported that Pdzrn3 signaling induced PKC ζ expression, c-Jun nuclear translocation and a reduced nuclear ß catenin level, consistent markers of the planar non-canonical Wnt signaling in CM. We then show that subcellular localization (intercalated disk) of junction proteins as Cx43, ZO1 and Desmoglein 2 was altered in Pdzrn3 OE mice, which provides a molecular explanation for impaired CM polarization in these mice. Our results reveal a novel signaling pathway that controls a genetic program essential for heart maturation and maintenance of overall geometry, as well as the contractile function of CM, and implicates PDZRN3 as a potential therapeutic target for the prevention of human heart failure
    corecore