63 research outputs found

    DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function

    Get PDF
    Parkinson's disease is a neurodegenerative disorder characterized by the death of dopaminergic neurons and by accumulation of alpha-synuclein (aS) aggregates in the surviving neurons. The dopamine catabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is a highly reactive and toxic molecule that leads to aS oligomerization by covalent modifications to lysine residues. Here we show that DOPAL-induced aS oligomer formation in neurons is associated with damage of synaptic vesicles, and with alterations in the synaptic vesicles pools. To investigate the molecular mechanism that leads to synaptic impairment, we first aimed to characterize the biochemical and biophysical properties of the aS-DOPAL oligomers; heterogeneous ensembles of macromolecules able to permeabilise cholesterol-containing lipid membranes. aS-DOPAL oligomers can induce dopamine leak in an in vitro model of synaptic vesicles and in cellular models. The dopamine released, after conversion to DOPAL in the cytoplasm, could trigger a noxious cycle that further fuels the formation of aS-DOPAL oligomers, inducing neurodegeneration

    Conformational equilibria in monomeric alpha-synuclein at the single molecule level

    Full text link
    Natively unstructured proteins defy the classical "one sequence-one structure" paradigm of protein science. Monomers of these proteins in pathological conditions can aggregate in the cell, a process that underlies socially relevant neurodegenerative diseases such as Alzheimer and Parkinson. A full comprehension of the formation and structure of the so-called misfolded intermediates from which the aggregated states ensue is still lacking. We characterized the folding and the conformational diversity of alpha-synuclein (aSyn), a natively unstructured protein involved in Parkinson disease, by mechanically stretching single molecules of this protein and recording their mechanical properties. These experiments permitted us to directly observe directly and quantify three main classes of conformations that, under in vitro physiological conditions, exist simultaneously in the aSyn sample, including disordered and "beta-like" structures. We found that this class of "beta-like" structures is directly related to aSyn aggregation. In fact, their relative abundance increases drastically in three different conditions known to promote the formation of aSyn fibrils: the presence of Cu2+, the occurrence of the pathogenic A30P mutation, and high ionic strength. We expect that a critical concentration of aSyn with a "beta-like" structure must be reached to trigger fibril formation. This critical concentration is therefore controlled by a chemical equilibrium. Novel pharmacological strategies can now be tailored to act upstream, before the aggregation process ensues, by targeting this equilibrium. To this end, Single Molecule Force Spectroscopy can be an effective tool to tailor and test new pharmacological agents.Comment: 37 pages, 9 figures (including supplementary material

    The Roc domain of LRRK2 as a hub for protein-protein interactions:a focus on PAK6 and its impact on RAB phosphorylation

    Get PDF
    Leucine-rich repeat kinase 2 (LRRK2) has taken center stage in Parkinson's disease (PD) research as mutations cause familial PD and more common variants increase lifetime risk for disease. One unique feature in LRRK2 is the coexistence of GTPase/Roc (Ras of complex) and kinase catalytic functions, bridged by a COR (C-terminal Of Roc) platform for dimerization. Multiple PD mutations are located within the Roc/GTPase domain and concomitantly lead to defective GTPase activity and augmented kinase activity in cells, supporting a crosstalk between GTPase and kinase domains. In addition, biochemical and structural data highlight the importance of Roc as a molecular switch modulating LRRK2 monomer-to-dimer equilibrium and building the interface for interaction with binding partners. Here we review the effects of PD Roc mutations on LRRK2 function and discuss the importance of Roc as a hub for multiple molecular interactions relevant for the regulation of cytoskeletal dynamics and intracellular trafficking pathways. Among the well-characterized Roc interactors, we focused on the cytoskeletal-related kinase p21-activated kinase 6 (PAK6). We report the affinity between LRRK2-Roc and PAK6 measured by microscale thermophoresis (MST). We further show that PAK6 can modulate LRRK2-mediated phosphorylation of RAB substrates in the presence of LRRK2 wild-type (WT) or the PD G2019S kinase mutant but not when the PD Roc mutation R1441G is expressed. These findings support a mechanism whereby mutations in Roc might affect LRRK2 activity through impaired protein-protein interaction in the cell

    Datasets related to GR-2016-02363461 project: "Novel therapeutic targets in Parkinson's disease"

    No full text
    Datasets include all data related to the project's specific aims 1, 2 and 3: To investigate P-14-3-3 specific interactors using proteomics screens. To assess whether PAK6-mediated 14-3-3 phosphorylation decreases the neuroprotective effect on aS aggregation process in vitro and in cells. To develop and implement novel biomarker assays monitoring P-14-3-3 and P-PAK6 in human PD specimens

    Single-molecule force spectroscopy of chimeric polyprotein constructs containing intrinsically disordered domains

    No full text
    none4Here, we describe the single molecule force spectroscopy (SMFS)-based experimental protocol we have recently used to single out different classes of conformations in a chimeric multimodular protein containing an intrinsically disordered (human Alpha Synuclein) domain. Details are provided regarding cloning, expression and purification of the chimeric polyprotein constructs, optimal surface preparation, SMFS data collection and filtering. Although the specificity of the issue and the ensemble of nonstandard techniques needed to perform the described procedures render this a rather unorthodox protocol, it is relatively straightforward to adapt it to the study of other protein domains.noneBrucale M;Tessari I;Bubacco L;Samorì BBrucale, M; Tessari, Isabella; Bubacco, Luigi; Samorì, B

    Interaction Between alpha-Synuclein and Metal Ions, Still Looking for a Role in the Pathogenesis of Parkinson's Disease

    No full text
    The most recent literature on the interaction between \u3b1-synuclein in its several aggregation states and metal ions is discussed. This analysis shows two major types of interactions. Binding sites are present in the C-terminal region, and similar, low affinity (in the millimolar range) is exhibited toward many different metal ions, including copper and iron. A more complex scenario emerges for these latter metal ions, which are also able to coordinate with high affinity (in the micromolar range) to the N-terminal region of \u3b1-synuclein. Moreover, these redox-active metal ions may induce chemical modifications on the protein in vitro and in the reducing intracellular environment, and these modifications might be relevant for the aggregation properties of \u3b1-synuclein. Finally, an attempt is made to contextualize the interaction between \u3b1-synuclein and these metal ions in the framework of the elusive and multifactorial pathogenesis of Parkinson\u2019s disease

    Worm-like ising model for protein mechanical unfolding under the effect of osmolytes.

    Get PDF
    We show via single-molecule mechanical unfolding experiments that the osmolyte glycerol stabilizes the native state of the human cardiac I27 titin module against unfolding without shifting its unfolding transition state on the mechanical reaction coordinate. Taken together with similar findings on the immunoglobulin-binding domain of streptococcal protein G (GB1), these experimental results suggest that osmolytes act on proteins through a common mechanism that does not entail a shift of their unfolding transition state. We investigate the above common mechanism via an Ising-like model for protein mechanical unfolding that adds worm-like-chain behavior to a recent generalization of the Wako-Sait\uf4-Mu\uf1oz-Eaton model with support for group-transfer free energies. The thermodynamics of the model are exactly solvable, while protein kinetics under mechanical tension can be simulated via Monte Carlo algorithms. Notably, our force-clamp and velocity-clamp simulations exhibit no shift in the position of the unfolding transition state of GB1 and I27 under the effect of various osmolytes. The excellent agreement between experiment and simulation strongly suggests that osmolytes do not assume a structural role at the mechanical unfolding transition state of proteins, acting instead by adjusting the solvent quality for the protein chain analyte
    • …
    corecore