30 research outputs found

    Optical Mapping of cAMP Signaling at the Nanometer Scale

    Get PDF
    Cells relay a plethora of extracellular signals to specific cellular responses by using only a few second messengers, such as cAMP. To explain signaling specificity, cAMP-degrading phosphodiesterases (PDEs) have been suggested to confine cAMP to distinct cellular compartments. However, measured rates of fast cAMP diffusion and slow PDE activity render cAMP compartmentalization essentially impossible. Using fluorescence spectroscopy, we show that, contrary to earlier data, cAMP at physiological concentrations is predominantly bound to cAMP binding sites and, thus, immobile. Binding and unbinding results in largely reduced cAMP dynamics, which we term “buffered diffusion.” With a large fraction of cAMP being buffered, PDEs can create nanometer-size domains of low cAMP concentrations. Using FRET-cAMP nanorulers, we directly map cAMP gradients at the nanoscale around PDE molecules and the areas of resulting downstream activation of cAMP-dependent protein kinase (PKA). Our study reveals that spatiotemporal cAMP signaling is under precise control of nanometer-size domains shaped by PDEs that gate activation of downstream effectors

    cAMP signaling microdomains and their observation by optical methods

    Get PDF
    The second messenger cyclic AMP (cAMP) is a major intracellular mediator of many hormones and neurotransmitters and regulates a myriad of cell functions, including synaptic plasticity in neurons. Whereas cAMP can freely diffuse in the cytosol, a growing body of evidence suggests the formation of cAMP gradients and microdomains near the sites of cAMP production, where cAMP signals remain apparently confined. The mechanisms responsible for the formation of such microdomains are subject of intensive investigation. The development of optical methods based on fluorescence resonance energy transfer (FRET), which allow a direct observation of cAMP signaling with high temporal and spatial resolution, is playing a fundamental role in elucidating the nature of such microdomains. Here, we will review the optical methods used for monitoring cAMP and protein kinase A (PKA) signaling in living cells, providing some examples of their application in neurons, and will discuss the major hypotheses on the formation of cAMP/PKA microdomains

    Real-Time Monitoring of GPCR/cAMP Signalling by FRET and Single-Molecule Microscopy

    No full text
    G-protein-coupled receptors (GPCRs), located on the surface of virtually every cell in our organism, mediate the effects of many hormones and neurotransmitters. Although GPCRs have been extensively studied for more than 4 decades using pharmacological and biochemical methods, the recent introduction of optical methods such as fluorescence resonance energy transfer (FRET) and single-molecule microscopy is fostering novel and important discoveries in the field. Here, we review the use of such optical methods, focusing on some recent examples of their application to important and still unresolved questions concerning the spatial organisation and dynamics of GPCR signalling

    Kinetics and mechanism of G protein-coupled receptor activation

    No full text
    The activation of a G protein-coupled receptor is generally triggered by binding of an agonist to the receptor's binding pocket, or, in the case of rhodopsin, by light-induced changes of the pre-bound retinal. This is followed by a series of a conformational changes towards an active receptor conformation, which is capable of signalling to G proteins and other downstream proteins. In the past few years, a number of new techniques have been employed to analyze the kinetics of this activation process, including X-ray crystallographic three-dimensional structures of receptors in the inactive and the active states, NMR studies of labelled receptors, molecular simulations, and optical analyses with fluorescence resonance energy transfer (FRET). Here we review our current understanding of the activation process of GPCRs as well as open questions in the sequence of events ranging from (sub-)microsecond activation by light or agonist binding to millisecond activation of receptors by soluble ligands and the subsequent generation of an intracellular signal

    cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons

    Get PDF
    Summary: The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons. : Maiellaro et al. find that local cAMP controls site-specific synaptic plasticity in Drosophila motor neurons. The expression of a genetically encoded fluorescent cAMP sensor in motor neurons allows visualization of local cAMP signals and gives insight into the formation of cAMP signaling microdomains. Keywords: cAMP, synaptic plasticity, PDE, octopamine, FRET, active zone, dunce, GPC

    “Store-operated” cAMP signaling contributes to Ca2+-activated Cl− secretion in T84 colonic cells

    No full text
    Apical cAMP-dependent CFTR Cl(−) channels are essential for efficient vectorial movement of ions and fluid into the lumen of the colon. It is well known that Ca(2+)-mobilizing agonists also stimulate colonic anion secretion. However, CFTR is apparently not activated directly by Ca(2+), and the existence of apical Ca(2+)-dependent Cl(−) channels in the native colonic epithelium is controversial, leaving the identity of the Ca(2+)-activated component unresolved. We recently showed that decreasing free Ca(2+) concentration ([Ca(2+)]) within the endoplasmic reticulum (ER) lumen elicits a rise in intracellular cAMP. This process, which we termed “store-operated cAMP signaling” (SOcAMPS), requires the luminal ER Ca(2+) sensor STIM1 and does not depend on changes in cytosolic Ca(2+). Here we assessed the degree to which SOcAMPS participates in Ca(2+)-activated Cl(−) transport as measured by transepithelial short-circuit current (I(sc)) in polarized T84 monolayers in parallel with imaging of cAMP and PKA activity using fluorescence resonance energy transfer (FRET)-based reporters in single cells. In Ca(2+)-free conditions, the Ca(2+)-releasing agonist carbachol and Ca(2+) ionophore increased I(sc), cAMP, and PKA activity. These responses persisted in cells loaded with the Ca(2+) chelator BAPTA-AM. The effect on I(sc) was enhanced in the presence of the phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX), inhibited by the CFTR inhibitor CFTR(inh)-172 and the PKA inhibitor H-89, and unaffected by Ba(2+) or flufenamic acid. We propose that a discrete component of the “Ca(2+)-dependent” secretory activity in the colon derives from cAMP generated through SOcAMPS. This alternative mode of cAMP production could contribute to the actions of diverse xenobiotic agents that disrupt ER Ca(2+) homeostasis, leading to diarrhea

    Glucose increases extracellular [Ca2+] in rat insulinoma (INS-1E) pseudoislets as measured with Ca2+-sensitive microelectrodes.

    No full text
    Secretory granules of pancreatic β-cells contain high concentrations of Ca2+ ions that are co-released with insulin in the extracellular milieu upon activation of exocytosis. As a consequence, an increase in the extracellular Ca2+ concentration ([Ca2+]ext) in the microenvironment immediately surrounding β-cells should be expected following the exocytotic event. Using Ca2+-selective microelectrodes we show here that both high glucose and non-nutrient insulinotropic agents elicit a reversible increase of [Ca2+]ext within rat insulinoma (INS-1E) β-cells pseudoislets. The glucose-induced increases in [Ca2+]ext are blocked by pretreatment with different Ca2+ channel blockers. Physiological agonists acting as positive or negative modulators of the insulin secretion and drugs known to intersect the secretory machinery at different levels also induce [Ca2+]ext changes as predicted on the basis of their described action on insulin secretion. Finally, the glucose-induced [Ca2+]ext increase is strongly inhibited after disruption of the actin web, indicating that the dynamic [Ca2+]ext changes recorded in INS-1E pseudoislets by Ca2+-selective microelectrodes occur mainly as a consequence of exocytosis of Ca2+-rich granules. In conclusion, our data directly demonstrate that the extracellular spaces surrounding β-cells constitute a restricted domain where Ca2+ is co-released during insulin exocytosis, creating the basis for an autocrine/paracrine cell-to-cell communication system via extracellular Ca2+ sensor

    Experimental and mathematical analysis of cAMP nanodomains.

    Get PDF
    In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (<100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells

    Functional modulation of PTH1R activation and signaling by RAMP2

    Get PDF
    Receptor-activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that associate with different G protein–coupled receptors (GPCRs), including the parathyroid hormone 1 receptor (PTH1R), a class B GPCR and an important modulator of mineral ion homeostasis and bone metabolism. However, it is unknown whether and how RAMP proteins may affect PTH1R function. Using different optical biosensors to measure the activation of PTH1R and its downstream signaling, we describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique preactivated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity. Additionally, RAMP2 increases both PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R. Employing homology modeling, we describe the putative structural molecular basis underlying our functional findings. These data uncover a critical role of RAMPs in the activation and signaling of a GPCR that may provide a new venue for highly specific modulation of GPCR function and advanced drug design
    corecore