26 research outputs found

    Treatment of Hemophilia in the Near Future

    No full text

    Role of von Willebrand factor in the haemostasis

    Get PDF
    von Willebrand factor (VWF) is an adhesive and multimeric glycoprotein that found its historical origin in 1924, when the Finnish physician Erik von Willebrand first reported a family with a serious hereditary bleeding affecting consanguineous families. The proband was a five years old girl with severe bleeding since birth. Three sisters had died before the age of four, one living sister, aged three, also was severely affected. von Willebrand had thought that it was a disorder of platelet function or a vascular defect as a possible cause of the bleeding. Since the original observations by Erik von Willebrand, the disease has been extensively studied and it was shown in the mid 1950s that impaired haemostasis was because of lack or an abnormality of a plasmatic factor - the von Willebrand factor \u2013 necessary for normal hemostasis

    Development of a Specific Monoclonal Antibody to Detect Male Cells Expressing the RPS4Y1 Protein

    No full text
    Hemophilia is an X-linked recessive bleeding disorder. In pregnant women carrier of hemophilia, the fetal sex can be determined by non-invasive analysis of fetal DNA circulating in the maternal blood. However, in case of a male fetus, conventional invasive procedures are required for the diagnosis of hemophilia. Fetal cells, circulating in the maternal bloodstream, are an ideal target for a safe non-invasive prenatal diagnosis. Nevertheless, the small number of cells and the lack of specific fetal markers have been the most limiting factors for their isolation. We aimed to develop monoclonal antibodies (mAbs) against the ribosomal protein RPS4Y1 expressed in male cells. By Western blotting, immunoprecipitation and immunofluorescence analyses performed on cell lysates from male human hepatoma (HepG2) and female human embryonic kidney (HEK293) we developed and characterized a specific monoclonal antibody against the native form of the male RPS4Y1 protein that can distinguish male from female cells. The availability of the RPS4Y1-targeting monoclonal antibody should facilitate the development of novel methods for the reliable isolation of male fetal cells from the maternal blood and their future use for non-invasive prenatal diagnosis of X-linked inherited disease such as hemophilia

    Clustered F8 missense mutations cause hemophilia A by combined alteration of splicing and protein biosynthesis and activity

    Get PDF
    Dissection of pleiotropic effects of missense mutations, rarely investigated in inherited diseases, is fundamental to understanding genotype-phenotype relationships. Missense mutati ons might impair mRNA processing in addition to protein properties. As a model for hemophilia A, we investigated the highly prevalent F8 c.6046c>t/p.R2016W (exon 19) mutation. In expression studies exploiting lentiviral vectors, we demonstrated that the amino acid change impairs both Factor VIII (FVIII) secretion (antigen 11.0±0.4% of wildtype) and activity (6.0±2.9%). Investigations in patientsâ\u80\u99 ectopic F8 mRNA and with minigenes showed that the corresponding nucleotide change also decreases correct splicing to 70±5%, which is predicted to lower further FVIII activity (4.2±2%), consistently with patientsâ\u80\u99 levels (a (p.G2013R) reduced exon inclusion to 41±3% and the c.6053a>g (p.E2018G) to 28±2%, similarly to a variant affecting the 5â\u80\u99 splice site (c.6113a>g, p.N2038S, 26±2%), which displayed normal protein features upon recombinant expression. The p.G2013R reduced both antigen (7.0±0.9%) and activity (8.4±0.8%), while the p.E2018G produced a dysfunctional molecule (antigen: 69.0±18.1%; activity: 19.4±2.3%). In conclusion, differentially altered mRNA and protein patterns produce a gradient of residual activity, and clarify genotype-phenotype relationships. Data detail pathogenic mechanisms that, only in combination, account for moderate/severe disease forms, which in turn determine the mutation profile. Taken together we provide a clear example of interplay between mRNA and protein mechanisms of disease that operate in shaping many other inherited disorders

    Genetic Variants Identified by Whole Exome Sequencing in a Large Italian Family with High Plasma Levels of Factor VIII and Von Willebrand Factor

    No full text
    High plasma levels of factor VIII (FVIII) and von Willebrand factor (VWF) have been indicated as independent risk factors for venous thromboembolism. However, the genetic factors responsible for their increase remain poorly known. In a large Italian family with high FVIII/VWF levels and thrombotic episodes, whole exome sequencing (WES) was performed on 12 family members to identify variants/genes involved in FVIII/VWF increase. Twenty variants spread over a 8300 Kb region on chromosome 5 were identified in 12 genes, including the low frequency rs13158382, located upstream of the MIR143/145 genes, which might affect miR-143/145 transcription or processing. The expression of miR-143/145 and VWF mRNA were evaluated in the peripheral blood mononuclear cells of six family members. Members with the variant (n = 3) showed lower levels of both miRNAs and higher levels of VWF mRNA compared to members without the variant (n = 3). An analysis of genetic and expression data from a larger cohort of individuals from the 1000 Genomes and GEUVADIS project confirmed a statistically significant reduction (p-value = 0.023) in miR-143 in heterozygous (n = 35) compared to homozygous wild-type individuals (n = 386). This family-based study identified a new genetic variant potentially involved in VWF increase by affecting miR-143/145 expression

    The first deletion mutation in the TSP1-6 repeat domain of ADAMTS13 in a family with inherited thrombotic thrombocytopenic purpura

    Get PDF
    This report describes a novel mutation in the TSP1-6 domain of ADAMTS13 in a family with inherited thrombotic thrombocytopenic purpura. See related perspective article on page 166

    Updates on Novel Non-Replacement Drugs for Hemophilia

    No full text
    Over the last decade, the world of hemophilia has experienced an unprecedented therapeutic advance, thanks to the progress in bioengineering technologies, leading to the introduction of drugs with novel mechanisms of action based on restoring thrombin generation or coagulation factor VIII mimicking. Apart from the bispecific monoclonal antibody emicizumab, already approved for patients with severe hemophilia A with and without inhibitors, novel non-replacement drugs designed to reduce the treatment burden of patients with hemophilia A or B with or without inhibitors are undergoing evaluation in clinical trials. Thanks to their innovative mechanism of action and subcutaneous administration, these drugs promise to provide effective bleeding protection together with improved adherence and improve health-related quality of life for patients with hemophilia. On the other hand, rare thromboembolic events have been reported with some of these drugs and warrant continuous post-marketing surveillance and investigation of predisposing factors, although the overall safety profile of most of these drugs is good. Finally, new challenges need to be faced in the clinical and laboratory monitoring of the hemostatic status in patients treated with these innovative therapies. In this review, we provide an update on the available data on novel non-replacement drugs currently undergoing evaluation in clinical trials for patients with hemophilia

    Clustered F8

    No full text
    corecore