81 research outputs found

    Report of two cases of influenza virus A/H1N1v and B co-infection during the 2010/2011 epidemics in the Italian Veneto Region

    Get PDF
    From October 2010 to April 2011, in the Italian Veneto Region, 1403 hospitalized patients were tested for influenza virus infection by specific real time RT-PCR. Overall, 327 samples were positive for either influenza A (75%) or B (25%) viruses. Among these positive patients two resulted co-infected by A/H1N1v and B viruses. Even though co-infection with both influenza A and B viruses appears to be a rare event, it occurs naturally and may play a role in epidemiology and pathogenicity. In the present study the two co-infected patients were a transplant recipient immunocompromised adult and a child displaying a severe respiratory illness. The co-infection was confirmed by inoculation of the nasopharyngeal swabs in MDCK.2 cells, followed by immunofluorescence and real time RT-PCR assays. Moreover, in the case of the adult patient, the immune system response against both viruses was assayed by hemoagglutination inhibition test against reference influenza virus strains. Both patients fully recovered from infection, without significant differences with mono-infected patients

    Different pH requirements are associated with divergent inhibitory effects of chloroquine on human and avian influenza A viruses

    Get PDF
    Chloroquine is a 4-aminoquinoline previously used in malaria therapy and now becoming an emerging investigational antiviral drug due to its broad spectrum of antiviral activities. To explore whether the low pH-dependency of influenza A viruses might affect the antiviral effects of chloroquine at clinically achievable concentrations, we tested the antiviral effects of this drug on selected human and avian viruses belonging to different subtypes and displaying different pH requirements. Results showed a correlation between the responses to chloroquine and NH4Cl, a lysosomotropic agent known to increase the pH of intracellular vesicles. Time-of-addition experiments showed that the inhibitory effect of chloroquine was maximal when the drug had been added at the time of infection and was lost after 2 h post-infection. This timing approximately corresponds to that of virus/cell fusion. Moreover, there was a clear correlation between the EC50 of chloroquine in vitro and the electrostatic potential of the HA subunit (HA2) mediating the virus/cell fusion process. Overall, the present study highlights the critical importance of a host cell factor such as intravesicular pH in determining the anti-influenza activity of chloroquine and other lysosomotropic agents

    Transmission of Hemagglutinin D222G Mutant Strain of Pandemic (H1N1) 2009 Virus

    Get PDF
    A pandemic (H1N1) 2009 virus strain carrying the D222G mutation was identified in a severely ill man and was transmitted to a household contact. Only mild illness developed in the contact, despite his obesity and diabetes. The isolated virus reacted fully with an antiserum against the pandemic vaccine strain

    A sensitive one-step real-time PCR for detection of avian influenza viruses using a MGB probe and an internal positive control

    Get PDF
    BACKGROUND: Avian influenza viruses (AIVs) are endemic in wild birds and their introduction and conversion to highly pathogenic avian influenza virus in domestic poultry is a cause of serious economic losses as well as a risk for potential transmission to humans. The ability to rapidly recognise AIVs in biological specimens is critical for limiting further spread of the disease in poultry. The advent of molecular methods such as real time polymerase chain reaction has allowed improvement of detection methods currently used in laboratories, although not all of these methods include an Internal Positive Control (IPC) to monitor for false negative results. Therefore we developed a one-step reverse transcription real time PCR (RRT-PCR) with a Minor Groove Binder (MGB) probe for the detection of different subtypes of AIVs. This technique also includes an IPC. METHODS: RRT-PCR was developed using an improved TaqMan technology with a MGB probe to detect AI from reference viruses. Primers and probe were designed based on the matrix gene sequences from most animal and human A influenza virus subtypes. The specificity of RRT-PCR was assessed by detecting influenza A virus isolates belonging to subtypes from H1–H13 isolated in avian, human, swine and equine hosts. The analytical sensitivity of the RRT-PCR assay was determined using serial dilutions of in vitro transcribed matrix gene RNA. The use of a rodent RNA as an IPC in order not to reduce the efficiency of the assay was adopted. RESULTS: The RRT-PCR assay is capable to detect all tested influenza A viruses. The detection limit of the assay was shown to be between 5 and 50 RNA copies per reaction and the standard curve demonstrated a linear range from 5 to 5 × 10(8 )copies as well as excellent reproducibility. The analytical sensitivity of the assay is 10–100 times higher than conventional RT-PCR. CONCLUSION: The high sensitivity, rapidity, reproducibility and specificity of the AIV RRT-PCR with the use of IPC to monitor for false negative results can make this method suitable for diagnosis and for the evaluation of viral load in field specimens

    Can Preening Contribute to Influenza A Virus Infection in Wild Waterbirds?

    Get PDF
    Wild aquatic birds in the Orders Anseriformes and Charadriiformes are the main reservoir hosts perpetuating the genetic pool of all influenza A viruses, including pandemic viruses. High viral loads in feces of infected birds permit a fecal-oral route of transmission. Numerous studies have reported the isolation of avian influenza viruses (AIVs) from surface water at aquatic bird habitats. These isolations indicate aquatic environments have an important role in the transmission of AIV among wild aquatic birds. However, the progressive dilution of infectious feces in water could decrease the likelihood of virus/host interactions. To evaluate whether alternate mechanisms facilitate AIV transmission in aquatic bird populations, we investigated whether the preen oil gland secretions by which all aquatic birds make their feathers waterproof could support a natural mechanism that concentrates AIVs from water onto birds' bodies, thus, representing a possible source of infection by preening activity. We consistently detected both viral RNA and infectious AIVs on swabs of preened feathers of 345 wild mallards by using reverse transcription–polymerase chain reaction (RT-PCR) and virus-isolation (VI) assays. Additionally, in two laboratory experiments using a quantitative real-time (qR) RT-PCR assay, we demonstrated that feather samples (n = 5) and cotton swabs (n = 24) experimentally impregnated with preen oil, when soaked in AIV-contaminated waters, attracted and concentrated AIVs on their surfaces. The data presented herein provide information that expands our understanding of AIV ecology in the wild bird reservoir system

    International laboratory comparison of influenza microneutralization assays for A(H1N1)pdm09, A(H3N2), and A(H5N1) influenza viruses by CONSISE

    Get PDF
    The microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HAMNassay protocols to enable better correlation of these assays in the future

    Why, how and where does interspecies transmission of influenza A viruses occur?

    No full text
    Viruses are intracellular parasites that require a living host in which to replicate. The parasitic nature of viruses makes them important infectious agents of humans, animal, plants and microorganisms. Viruses are ubiquitous in nature being found in all ecological niches occupied by their hosts. This book examines different types of viruses that are found in a variety of environments \u2013 including water, food, plants and animals \u2013 and can have major health and economic impact on humans and other hosts. Chapter 1 explores the complex nature of the ecology of influenza virus and the role that reassortment of segmented viral genomes in different animal hosts plays in the rapid production of new viruses with increased pathogenicity. Chapter 2 also looks at the interaction between viruses and hosts with a focus on the transmission of begomovirus by the whitefly vector, Bemisia tabaci, a pest of major agricultural plants. Food and water play major roles in the transmission of many viruses. These environments are the subject of chapters 3 and 4, respectively. The circulation of waterborne viruses, the diseases they cause, methods of virus detection and legislative issues concerning water quality are discussed in chapter 3, while chapter 4 focuses on the biology of two important foodborne viruses \u2013 norovirus and hepatitis A virus \u2013 and discusses methods of control of their spread. Chapters 5 and 6 describe the evolution of arboviruses and rotavirus, respectively, and the factors involved in the emergence and proliferation of new virus types. Finally, chapter 7 deals with the use of bacteriophages as biocontrol agents. The history of \u2018bacteriophage therapy\u2019 is discussed with the focus of the chapter being the control of bacterial growth in environmental and food applications. The book is suitable for practicing scientists as well as graduate students who seek an understanding of the variety of viruses that share our world
    corecore