8 research outputs found
Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation
Objective. Stimulation strategies for retinal prostheses predominately seek to directly encode image brightness values rather than edge orientations. Recent work suggests that the generation of oriented elliptical phosphenes may be possible by controlling interactions between neighboring electrodes. Based on this, we propose a novel stimulation strategy for prosthetic vision that extracts edge orientation information from the intensity image and encodes it as oriented elliptical phosphenes. We test the hypothesis that encoding edge orientation via oriented elliptical phosphenes leads to better alphabetic letter recognition than standard intensity-based encoding. Approach. We conduct a psychophysical study with simulated phosphene vision with 12 normal-sighted volunteers. The two stimulation strategies were compared with variations of letter size, electrode drop-out and spatial offsets of phosphenes. Main results. Mean letter recognition accuracy was significantly better with the new proposed stimulation strategy (65%) compared to direct grayscale encoding (47%). All examined parameters-stimulus size, phosphene dropout, and location shift-were found to influence the performance, with significant two-way interactions between phosphene dropout and stimulus size as well as between phosphene dropout and phosphene location shift. The analysis delivers a model of perception performance. Significance. Displaying available directional information to an implant user may improve their visual performance. We present a model for designing a stimulation strategy under the constraints of existing retinal prostheses that can be exploited by retinal implant developers to strategically employ oriented phosphenes
Software Carpentry: Programming with MATLAB
A half-day introduction to programming in MATLAB for researchers, developed and maintained by the Software Carpentry team
A neuroethics framework for the Australian Brain Initiative
Neuroethics is central to the Australian Brain Initiative’s aim to sustain a thriving and responsible neurotechnology industry. Diverse and inclusive community and stakeholder engagement and a trans-disciplinary approach to neuroethics will be key to the success of the Australian Brain Initiative