5 research outputs found

    Do commercial whitening dentifrices increase enamel erosive tooth wear?

    Get PDF
    Objective: This in vitro study evaluated the effect of commercial whitening dentifrices on erosive tooth wear (ETW) of bovine enamel samples, in comparison with commercial regular dentifrices. Methodology: Sixty bovine crowns were embedded in acrylic resin, polished and then had their baseline profile determined. They were randomly assigned to 5 groups (n=12/group), according to the type of commercial dentifrice to be tested: GI – Crest Anti-cavity Regular; GII – Crest 3D White; GIII – Colgate Total 12 Clean Mint; GIV – Colgate Optic White; GV – Placebo (negative control, fluoride-free dentifrice). The samples were submitted to daily erosive and abrasive challenges for 3 days. The erosive challenges were performed 3 times a day by immersing the specimens in 0.1% citric acid solution (pH 2.5) for 90 s. Each day after the first and last erosive challenges, the specimens were subjected to the abrasive challenge for 15 s, using a toothbrushing machine (Biopdi, São Carlos, SP, Brazil), soft toothbrushes and slurry (1:3 g/ml) of the tested toothpastes (1.5 N). The specimens were kept in artificial saliva between the challenges. The final profile was obtained and the ETW (µm) was calculated. Data were analyzed by Kruskal-Wallis and Dunn’s tests (p<0.05). Results: All dentifrices tested significantly reduced the enamel wear in comparison with the Placebo, except GIII. The median (95% CI) ETW was 1.35 (1.25-1.46)bc for GI, 1.17 (1.01-1.34)cd for GII, 1.36 (1.28-1.45)ab for GIII, 1.08 (1.04-1.14)d for GIV and 2.28 (2.18-2.39)a for GV. Conclusion: When dentifrices from the same manufacturer were compared, the whitening dentifrices led to similar or less wear than the regular ones

    Intestinal changes associated with fluoride exposure in rats: Integrative morphological, proteomic and microbiome analyses

    No full text
    Gastrointestinal signs and symptoms are the first signs of toxicity due to exposure to fluoride (F). This suggests the possibility that lower levels of subchronic F exposure may affect the gut. The aim of this study was to evaluate changes in the morphology, proteome and microbiome of the ileum of rats, after subchronic exposure to F. Male rats ingested water with 0, 10, or 50 mgF/L for thirty days. Treatment with F, regardless of the dose, significantly decreased the density of HuC/D-IR neurons, whereas CGRP-IR and SP-IR varicosities were significantly increased compared to the control group. Increased VIP-IR varicosities were significantly increased only in the group treated with 50 mgF/L. A significant increase in thickness of the tunica muscularis, as well as in the total thickness of the ileum wall was observed at both F doses when compared to controls. In proteomics analysis, myosin isoforms were increased, and Gastrotopin was decreased in F-exposed mice. In the microbiome metagenomics analysis, Class Clostridia was significantly reduced upon exposure to 10 mgF/L. At the higher F dose of 50 mg/L, genus Ureaplasma was significantly reduced in comparison with controls. Morphological and proteomics alterations induced by F were marked by changes associated with inflammation, and alterations in the gut microbiome. Further studies are needed to determine whether F exposure increases inflammation with secondary effects of the gut microbiome, and/or whether primary effects of F on the gut microbiome enhance changes associated with inflammation
    corecore