93 research outputs found

    Experimental study for the determination of the turbulence onset in natural convection on inclined plates

    Get PDF
    In June, 8th, 2009 the balloon-borne solar telescope SUNRISE was launched from the Swedish Space Corporation balloon facility Esrange. A telescope with a mirror of 1 m in diameter ob-served the Sun during six days until the mission was terminated in Canada. The design process of SUNRISE and of any optical telescope requires the analysis of the effect of surrounding air on the quality of images. The turbulence encountered in the local telescope environment de-grades its optical performance. This phenomenon called `seeing' consists of optical aberrations produced by density non-homogeneities in the air along the optical path. The refraction index of air changes due to thermal non-uniformities so that the wavefront incident on the mirror is randomly distorted, and therefore, images are altered. When telescope mirrors are heated, as it happens in solar telescopes, and therefore they are at a temperature different from the environment's, natural convection occurs. It is then crucial to know whether the flow in front of the mirror is laminar or turbulent. After reviewing the literature, it was found that the scattering of results about the onset of the transition gives only rough orders of magnitude of the values of the critical Grashof numbers. Aiming to obtain more information about it, the problem of determination of the turbulence onset in natural convection on heated inclined plates in air environment was experimentally revisited. The transition has been determined from hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity perturbations start to grow. Experiments have shown that the onset depends not only on the Grashof number, but also on other parameters as the temperature difference between the heated plate and the surrounding air. A correlation between dimensionless Grashof and Reynolds numbers has been obtained, fitting extraordinarily well the experimental data. The results are obtained in terms of non-dimensional numbers, this way they apply to any air pressure and therefore to any floating altitud

    Diseño térmico preliminar del Instrumento PHI de Solar Orbiter

    Get PDF
    En este trabajo se describe el subsistema de control térmico de PHI y se presentan las predicciones de temperaturas obtenidas para los distintos casos de carga. Debido a la naturaleza de la órbita seguida por el satélite en el cual PHI va embarcado (Solar Orbiter), el ambiente en el cual va a tener que operar PHI será muy exigente, convirtiendo el diseño térmico en un auténtico desafío. Los resultados obtenidos muestran la viabilidad de PHI desde el punto de vista térmico, aunque indiscutiblemente el instrumento va a operar en un entorno térmico muy hostil

    On the onset of turbulence in natural convection on inclined plates

    Get PDF
    The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the onset depends not only on the Grashof number defined in terms of the temperature difference between the heated plate and the surrounding air. A correlation between dimensionless Grashof and Reynolds numbers has been obtained, fitting quite well the experimental data

    Galloping instabilities of Z-shaped shading louvers

    Get PDF
    Modern design of civil constructions such as office blocks, airport terminal buildings, factories, etc. incorporates more and more environmental considerations that lead to, amongst other elements, the use of glazed façades with shading devices to optimize energy consumption. These shading devices, normally slats or louvers, are very flexible structures exposed to the action of wind, and therefore aeroelastic effects such as galloping must be taken into account in their design. A typical cross-section for such elements is a Z-shaped profile made out of a central web and two side wings. The results of a parametric analysis based on static wind tunnel tests and performed on different Z-shaped louvers to determine translational galloping instability regions are presented in this paper

    Modelling of atmospheric boundary layer: Generation of shear.

    Get PDF
    Roughness length, z0 and friction velocity, u* are the defining parameters of wind log profile that must be matched in wind tunnel simulation. To fully understand the role of these parameters, the basics and review from the primitive equations and its relation to the logarithmic profile obtained for wind tunnel conditions were discussed. The problem of roughness, although well known, still needs to be addressed more rigorously especially when determining values of z0 and u* from wind tunnel data and their relation to the roughness element geometry. A review of classic literature and new published material were carried out, focusing on the applicability to wind tunnel modelling

    Experimental determination of the onset of turbulence on inclined plates using hot wire velocity measurements

    Get PDF
    The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the distance to the plate edge where the onset begins depends both on the plate inclination angle and the plate temperature, and thus on the Grashof number defined in terms of the temperature difference between the heated plate and the surrounding air. An experimental setup to measure the above mentioned distance has been developed. In this paper, such an apparatus is presented, as well as the experimental procedure and some experimental results

    Thermal behaviour of Sunrise, a balloon-borne solar Telescope

    Full text link
    Sunrise is a solar telescope, successfully flown in June 2009 with a long duration balloon from the Swedish Space Corporation Esrange launch site. The design of the thermal control of SUNRISE was quite critical because of the sensitivity to temperature of the optomechanical devices and the electronics. These problems got more complicated due the size and high power dissipation of the system. A detailed thermal mathematical model of SUNRISE was set up to predict temperatures. In this communication the thermal behaviour of SUNRISE during flight is presented. Flight temperatures of some devices are presented and analysed. The measured data have been compared with the predictions given by the thermal mathematical models. The main discrepancies between flight data and the temperatures predicted by the models have been identified. This allows thermal engineers to improve the knowledge of the thermal behaviour of the system for future missions

    Nonlinear analysis of a simple model of temperature evolution in a satellite

    Get PDF
    We analyse a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite's temperature is analysed by qualitative, perturbation and numerical methods, which show that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.Comment: 13 pages, 4 figures (5 EPS files
    • …
    corecore