224 research outputs found

    Fitness Measurements of Evolved Esherichia coli

    Get PDF
    Bacteria can adapt very rapidly to novel selective pressures. In the transition from commensalism to pathogenicity bacteria have to face and adapt to the host immune system. Specifically, the antagonistic interaction imposed by one of the first line of defense of innate immunity cells, macrophages, on commensal bacteria, such as Escherichia coli (E. coli), can lead to its rapid adaptation. Such adaptation is characterized by the emergence of clones with mutations that allow them to better escape macrophage phagocytosis. Here, we describe how to quantify the amount of fitness increase of bacterial clones that evolved under the constant selective pressure of macrophages, from a murine cell line RAW 264.7. The most widely used assay for measuring fitness changes along an evolutionary laboratory experiment is a competitive fitness assay. This assay consists of determining how fast an evolved strain outcompetes the ancestral in a competition where each starts at equal frequency. The strains compete in the same environment of the evolution experiment and if the evolved strain has acquired strong beneficial mutations it will become significantly overrepresented in repeated competitive fitness assays.LAO/ITQB, FCT

    Patterns of genetic variation in populations of infectious agents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of genetic variation in populations of infectious agents may help us understand their epidemiology and evolution. Here we study a model for assessing the levels and patterns of genetic diversity in populations of infectious agents. The population is structured into many small subpopulations, which correspond to their hosts, that are connected according to a specific type of contact network. We considered different types of networks, including fully connected networks and scale free networks, which have been considered as a model that captures some properties of real contact networks. Infectious agents transmit between hosts, through migration, where they grow and mutate until elimination by the host immune system.</p> <p>Results</p> <p>We show how our model is closely related to the classical SIS model in epidemiology and find that: depending on the relation between the rate at which infectious agents are eliminated by the immune system and the within host effective population size, genetic diversity increases with <it>R</it><sub>0 </sub>or peaks at intermediate <it>R</it><sub>0 </sub>levels; patterns of genetic diversity in this model are in general similar to those expected under the standard neutral model, but in a scale free network and for low values of <it>R</it><sub>0 </sub>a distortion in the neutral mutation frequency spectrum can be observed; highly connected hosts (hubs in the network) show patterns of diversity different from poorly connected individuals, namely higher levels of genetic variation, lower levels of genetic differentiation and larger values of Tajima's D.</p> <p>Conclusion</p> <p>We have found that levels of genetic variability in the population of infectious agents can be predicted by simple analytical approximations, and exhibit two distinct scenarios which are met according to the relation between the rate of drift and the rate at which infectious agents are eliminated. In one scenario the diversity is an increasing function of the level of transmission and in a second scenario it is peaked around intermediate levels of transmission. This is independent of the type of host contact structure. Furthermore for low values of <it>R</it><sub>0</sub>, very heterogeneous host contact structures lead to lower levels of diversity.</p

    Adaptive potential of epigenetic switching during adaptation to fluctuating environments.

    Get PDF
    Epigenetic regulation of gene expression allows for the emergence of distinct phenotypic states within the clonal population. Due to the instability of epigenetic inheritance, these phenotypes can inter-generationally switch between states in a stochastic manner. Theoretical studies of evolutionary dynamics predict that the phenotypic heterogeneity enabled by this rapid epigenetic switching between gene expression states would be favored under fluctuating environmental conditions, whereas genetic mutations, as a form of stable inheritance system, would be favored under a stable environment. To test this prediction, we engineered switcher and non-switcher yeast strains, in which the uracil biosynthesis gene URA3 is either continually expressed or switched on and off at two different rates (slow and fast switchers). Competitions between clones with an epigenetically controlled URA3 and clones without switching ability (SIR3 knock-out) show that the switchers are favored in fluctuating environments. This occurs in conditions where the environments fluctuate at similar rates to the rate of switching. However, in stable environments, but also in environments with fluctuation frequency higher than the rate of switching, we observed that genetic changes dominated. Remarkably, epigenetic clones with a high, but not with a low, rate of switching can co-exist with non-switchers even in a constant environment. Our study offers an experimental proof-of-concept that helps defining conditions of environmental fluctuation under which epigenetic switching provides an advantage

    Macrophage adaptation leads to parallel evolution of genetically diverseEscherichia colismall-colony variants with increased fitness in vivo and antibiotic collateral sensitivity

    Get PDF
    Small-colony variants (SCVs) are commonly observed in evolution experiments and clinical isolates, being associated with antibiotic resistance and persistent infections. We recently observed the repeated emergence of Escherichia coli SCVs during adaptation to the interaction with macrophages. To identify the genetic targets underlying the emergence of this clinically relevant morphotype, we performed whole-genome sequencing of independently evolved SCV clones. We uncovered novel mutational targets, not previously associated with SCVs (e.g. cydA, pepP) and observed widespread functional parallelism. All SCV clones had mutations in genes related to the electron-transport chain. As SCVs emerged during adaptation to macrophages, and often show increased antibiotic resistance, we measured SCV fitness inside macrophages and measured their antibiotic resistance profiles. SCVs had a fitness advantage inside macrophages and showed increased aminoglycoside resistance in vitro, but had collateral sensitivity to other antibiotics (e.g. tetracycline). Importantly, we observed similar results in vivo. SCVs had a fitness advantage upon colonization of the mouse gut, which could be tuned by antibiotic treatment: kanamycin (aminoglycoside) increased SCV fitness, but tetracycline strongly reduced it. Our results highlight the power of using experimental evolution as the basis for identifying the causes and consequences of adaptation during host-microbe interactions.European Research Council under the European Community’ Seventh Framework Programme grant:(FP7/2007-2013); German Science Foundation grants: (G-410861, SFB-680); EMMA; InfrafrontierI3

    Macrophage adaptation leads to parallel evolution of genetically diverseEscherichia colismall-colony variants with increased fitness in vivo and antibiotic collateral sensitivity

    Get PDF
    Small-colony variants (SCVs) are commonly observed in evolution experiments and clinical isolates, being associated with antibiotic resistance and persistent infections. We recently observed the repeated emergence of Escherichia coli SCVs during adaptation to the interaction with macrophages. To identify the genetic targets underlying the emergence of this clinically relevant morphotype, we performed whole-genome sequencing of independently evolved SCV clones. We uncovered novel mutational targets, not previously associated with SCVs (e.g. cydA, pepP) and observed widespread functional parallelism. All SCV clones had mutations in genes related to the electron-transport chain. As SCVs emerged during adaptation to macrophages, and often show increased antibiotic resistance, we measured SCV fitness inside macrophages and measured their antibiotic resistance profiles. SCVs had a fitness advantage inside macrophages and showed increased aminoglycoside resistance in vitro, but had collateral sensitivity to other antibiotics (e.g. tetracycline). Importantly, we observed similar results in vivo. SCVs had a fitness advantage upon colonization of the mouse gut, which could be tuned by antibiotic treatment: kanamycin (aminoglycoside) increased SCV fitness, but tetracycline strongly reduced it. Our results highlight the power of using experimental evolution as the basis for identifying the causes and consequences of adaptation during host-microbe interactions.European Research Council under the European Community’ Seventh Framework Programme grant:(FP7/2007-2013); German Science Foundation grants: (G-410861, SFB-680); EMMA; InfrafrontierI3

    Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria

    Get PDF
    Co-evolution between the mammalian immune system and the gut microbiota is believed to have shaped the microbiota's astonishing diversity. Here we test the corollary hypothesis that the adaptive immune system, directly or indirectly, influences the evolution of commensal species. We compare the evolution of Escherichia coli upon colonization of the gut of wild-type and Rag2(-/-) mice, which lack lymphocytes. We show that bacterial adaptation is slower in immune-compromised animals, a phenomenon explained by differences in the action of natural selection within each host. Emerging mutations exhibit strong beneficial effects in healthy hosts but substantial antagonistic pleiotropy in immune-deficient mice. This feature is due to changes in the composition of the gut microbiota, which differs according to the immune status of the host. Our results indicate that the adaptive immune system influences the tempo and predictability of E. coli adaptation to the mouse gut.EU-FP7 infrastructure grants: (EMMA and InfrafrontierI3), LAO/ITQB, FCT grant: (SFRH/BD/80257/2011)

    Multiple Resistance at No Cost: Rifampicin and Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance

    Get PDF
    Evidence is mounting that epistasis is widespread among mutations. The cost of carrying two deleterious mutations, or the advantage of acquiring two beneficial alleles, is typically lower that the sum of their individual effects. Much less is known on epistasis between beneficial and deleterious mutations, even though this is key to the amount of genetic hitchhiking that may occur during evolution. This is particularly important in the context of antibiotic resistance: Most resistances are deleterious, but some can be beneficial and remarkably rifampicin resistance can emerge de novo in populations evolving without antibiotics. Here we show pervasive positive pairwise epistasis on Escherichia coli fitness between beneficial mutations, which confer resistance to rifampicin, and deleterious mutations, which confer resistance to streptomycin. We find that 65% of double resistant strains outcompete sensitive bacteria in an environment devoid of antibiotics. Weak beneficial mutations may therefore overcome strong deleterious mutations and can even render double mutants strong competitors.LAO/ITQB, FCT

    Commensal-to-pathogen transition: One-single transposon insertion results in two pathoadaptive traits in Escherichia coli -macrophage interaction

    Get PDF
    There are no funders and sponsors indicated explicitly in the document. This deposit is composed by the main article plus the supplementary materials of the publication.Escherichia coli is both a harmless commensal in the intestines of many mammals, as well as a dangerous pathogen. The evolutionary paths taken by strains of this species in the commensal-to-pathogen transition are complex and can involve changes both in the core genome, as well in the pan-genome. One way to understand the likely paths that a commensal strain of E. coli takes when evolving pathogenicity is through experimentally evolving the strain under the selective pressures that it will have to withstand as a pathogen. Here, we report that a commensal strain, under continuous pressure from macrophages, recurrently acquired a transposable element insertion, which resulted in two key phenotypic changes: increased intracellular survival, through the delay of phagosome maturation and increased ability to escape macrophages. We further show that the acquisition of the pathoadaptive traits was accompanied by small but significant changes in the transcriptome of macrophages upon infection. These results show that under constant pressures from a key component of the host immune system, namely macrophage phagocytosis, commensal E. coli rapidly acquires pathoadaptive mutations that cause transcriptome changes associated to the host-microbe duet.There are no funders and sponsors indicated explicitly in the document.info:eu-repo/semantics/publishedVersio
    • …
    corecore