2 research outputs found

    Electron Emission of Pt: Experimental Study and Comparison With Models in the Multipactor Energy Range

    Full text link
    "(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Experimental data of secondary emission yield (SEY) and electron emission spectra of Pt under electron irradiation for normal incidence and primary energies lower than 1 keV are presented. Several relevant magnitudes, as total SEY, elastic backscattering probability, secondary emission spectrum, and backscattering coefficient, are given for different primary energies. These magnitudes are compared with theoretical or semiempiricalThis work was supported in part by the Ministerio de Economia y Competitividad under Project TEC2013-47037-C5-4-R, and in part by MICIIN through the Space Programme under Project AYA2012-39832-C02-01/02. The review of this paper was arranged by Editor M. Thumm.Bronchalo, E.; Coves, A.; Mata Sanz, R.; Gimeno Martinez, B.; Montero, I.; Galán, L.; Boria Esbert, VE.... (2016). Electron Emission of Pt: Experimental Study and Comparison With Models in the Multipactor Energy Range. IEEE Transactions on Electron Devices. 63(8):3270-3277. https://doi.org/10.1109/TED.2016.2580199S3270327763

    The C-Terminal Half of SARS-CoV-2 Nucleocapsid Protein, Industrially Produced in Plants, Is Valid as Antigen in COVID-19 Serological Tests

    Get PDF
    Background: The fight against the current coronavirus disease 2019 (COVID-19) pandemic has created a huge demand of biotechnological, pharmaceutical, research and sanitary materials at unprecedented scales. One of the most urgent demands affects the diagnostic tests. The growing need for rapid and accurate laboratory diagnostic tests requires the development of biotechnological processes aimed at producing reagents able to cope with this demand in a scalable, cost-effective manner, with rapid turnaround times. This is particularly applicable to the antigens employed in serological tests. Recombinant protein expression using plants as biofactories is particularly suitable for mass production of protein antigens useful in serological diagnosis, with a neat advantage in economic terms. Methods: We expressed a large portion of the nucleoprotein (N) derived from SARS-CoV-2 in Nicotiana benthamiana plants. After purification, the recombinant N protein obtained was used to develop an indirect enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to SARS-CoV-2 in human sera. To validate the ELISA, a panel of 416 sera from exposed personnel at essential services in Madrid City Council were tested, and the results compared to those obtained by another ELISA, already validated, used as reference. Furthermore, a subset of samples for which RT-PCR results were available were used to confirm sensitivity and specificity of the test. Results: The performance of the N protein expressed in plants as antigen in serologic test for SARS-CoV-2 antibody detection was shown to be highly satisfactory, with calculated diagnostic sensitivity of 96.41% (95% CI: 93.05-98.44) and diagnostic specificity of 96.37 (95% CI: 93.05-98.44) as compared to the reference ELISA, with a kappa (K) value of 0.928 (95% CI:0.892-0.964). Furthermore, the ELISA developed with plant-derived N antigen detected SARS-CoV-2 antibodies in 84 out of 93 sera from individuals showing RT-PCR positive results (86/93 for the reference ELISA). Conclusion: This study demonstrates that the N protein part derived from SARS-CoV-2 expressed in plants performs as a perfectly valid antigen for use in COVID-19 diagnosis. Furthermore, our results support the use of this plant platform for expression of recombinant proteins as reagents for COVID-19 diagnosis. This platform stands out as a convenient and advantageous production system, fit-for-purpose to cope with the current demand of this type of biologicals in a cost-effective manner, making diagnostic kits more affordable.Work at Agrenvec and at the CBGP was funded in part by grant COV20-00114 from the Autonomous Region of Madrid (CAM) to FP. The CBGP thanks the Spanish Ministry of Science for the Severo Ochoa Excellence Accreditation (SEV-2016-0672).S
    corecore