114 research outputs found

    Vitamin D and Susceptibility of Chronic Lung Diseases: Role of Epigenetics

    Get PDF
    Vitamin D deficiency is linked to accelerated decline in lung function, increased inflammation, and reduced immunity in chronic lung diseases. Epidemiological studies have suggested that vitamin D insufficiency is associated with low lung function in susceptible subjects who are exposed to higher levels of environmental agents (airborne particulates). Recent studies have highlighted the role of vitamin D and vitamin D receptor (VDR) in regulation of several genes that are involved in inflammation, immunity, cellular proliferation, differentiation, and apoptosis. Vitamin D has also been implicated in reversal of steroid resistance and airway remodeling, which are the hallmarks of chronic obstructive pulmonary disease (COPD) and severe asthma. VDR protein level is decreased in lungs of patients with COPD. VDR deficient mice develop an abnormal lung phenotype with characteristics of COPD, such as airspace enlargement and decline in lung function associated with increased lung inflammatory cellular influx, and immune-lymphoid aggregates formation. Dietary vitamin D may regulate epigenetic events, in particular on genes which are responsible for COPD susceptibility. Active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 plays an essential role in cellular metabolism and differentiation via its nuclear receptor (VDR) that cooperates with several other chromatin modification enzymes (histone acetyltransferases and histone deacetylases), thereby mediating complex epigenetic events in vitamin D signaling and metabolism. This review provides an update on the current knowledge and understanding on vitamin D, and susceptibility of chronic lung diseases in relation to the possible role of epigenetics in its molecular action. Understanding the molecular epigenetic mechanism of vitamin D/VDR would provide rationale for dietary vitamin D-mediated intervention in prevention and management of chronic lung diseases linked with vitamin D deficiency

    Deletion of vitamin D receptor leads to premature emphysema/COPD by increased matrix metalloproteinases and lymphoid aggregates formation

    Get PDF
    Deficiency of vitamin D is associated with accelerated decline in lung function. Vitamin D is a ligand for nuclear hormone vitamin D receptor (VDR), and upon binding it modulates various cellular functions. The level of VDR is reduced in lungs of patients with chronic obstructive pulmonary disease (COPD) which led us to hypothesize that deficiency of VDR leads to significant alterations in lung phenotype that are characteristics of COPD/emphysema associated with increased inflammatory response. We found that VDR knock-out (VDR(−/−)) mice had increased influx of inflammatory cells, phospho-acetylation of nuclear factor-kappaB (NF-κB) associated with increased proinflammatory mediators, and up-regulation of matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MMP-12 in the lung. This was associated with emphysema and decline in lung function associated with lymphoid aggregates formation compared to WT mice. These findings suggest that deficiency of VDR in mouse lung can lead to an early onset of emphysema/COPD because of chronic inflammation, immune dysregulation, and lung destruction

    DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD

    Get PDF
    Background: Epigenetics changes have been shown to be affected by cigarette smoking. Cigarette smoke (CS)-mediated DNA methylation can potentially affect several cellular and pathophysiological processes, acute exacerbations, and comorbidity in the lungs of patients with chronic obstructive pulmonary disease (COPD). We sought to determine whether genome-wide lung DNA methylation profiles of smokers and patients with COPD were significantly different from non-smokers. We isolated DNA from parenchymal lung tissues of patients including eight lifelong non-smokers, eight current smokers, and eight patients with COPD and analyzed the samples using Illumina's Infinium HumanMethylation450 BeadChip. Results: Our data revealed that the differentially methylated genes were related to top canonical pathways (e.g., G beta gamma signaling, mechanisms of cancer, and nNOS signaling in neurons), disease and disorders (organismal injury and abnormalities, cancer, and respiratory disease), and molecular and cellular functions (cell death and survival, cellular assembly and organization, cellular function and maintenance) in patients with COPD. The genome-wide DNA methylation analysis identified suggestive genes, such as NOS1AP, TNFAIP2, BID, GABRB1, ATXN7, and THOC7 with DNA methylation changes in COPD lung tissues that were further validated by pyrosequencing. Pyrosequencing validation confirmed hyper-methylation in smokers and patients with COPD as compared to non-smokers. However, we did not detect significant differences in DNA methylation for TNFAIP2, ATXN7, and THOC7 genes in smokers and COPD groups despite the changes observed in the genome-wide analysis. Conclusions: Our study suggests that DNA methylation in suggestive genes, such as NOS1AP, BID, and GABRB1 may be used as epigenetic signatures in smokers and patients with COPD if the same is validated in a larger cohort. Future studies are required to correlate DNA methylation status with transcriptomics of selective genes identified in this study and elucidate their role and involvement in the progression of COPD and its exacerbations.Peer reviewe

    Lung cancer and its association with chronic obstructive pulmonary disease:update on nexus of epigenetics

    Get PDF
    PURPOSE OF REVIEW: Chronic obstructive pulmonary disease (COPD) and lung cancer are the leading causes of morbidity and mortality worldwide. The current research is focused on identifying the common and disparate events involved in epigenetic modifications that concurrently occur during the pathogenesis of COPD and lung cancer. The purpose of this review is to describe the current knowledge and understanding of epigenetic modifications in pathogenesis of COPD and lung cancer. RECENT FINDINGS: This review provides an update on advances of how epigenetic modifications are linked to COPD and lung cancer, and their commonalities and disparities. The key epigenetic modification enzymes (e.g. DNA methyltransferases – CpG methylation, histone acetylases/deacetylases and histone methyltransferases/demethylases) that are identified to play an important role in COPD and lung tumorigenesis and progression are described in this review. SUMMARY: Distinct DNA methyltransferases and histone modification enzymes are differentially involved in pathogenesis of lung cancer and COPD, although some of the modifications are common. Understanding the epigenetic modifications involved in pathogenesis of lung cancer or COPD with respect to common and disparate mechanisms will lead to targeting of epigenetic therapies against these disorders

    Emphysema is associated with increased inflammation in lungs of atherosclerosis-prone mice by cigarette smoke:implications in comorbidities of COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease is associated with numerous vascular effects including endothelial dysfunction, arterial stiffness and atherogenesis. It is also known that a decline in lung function is associated with increased cardiovascular comorbidity in smokers. The mechanism of this cardiopulmonary dual risk by cigarette smoke (CS) is not known. We studied the molecular mechanisms involved in development of emphysema in atherosclerosis-prone apolipoprotein E-deficient (ApoE<sup>-/-</sup>) mice in response to CS exposure.</p> <p>Methods</p> <p>Adult male and female wild-type (WT) mice of genetic background C57BL/6J and ApoE<sup>-/- </sup>mice were exposed to CS, and lung inflammatory responses, oxidative stress (lipid peroxidation products), mechanical properties as well as airspace enlargement were assessed.</p> <p>Results and Discussion</p> <p>The lungs of ApoE<sup>-/- </sup>mice showed augmented inflammatory response and increased oxidative stress with development of distal airspace enlargement which was accompanied with decline in lung function. Interestingly, the levels and activities of matrix metalloproteinases (MMP-9 and MMP-12) were increased, whereas the level of eNOS was decreased in lungs of CS-exposed ApoE<sup>-/- </sup>mice as compared to air-exposed ApoE<sup>-/- </sup>mice or CS-exposed WT mice.</p> <p>Conclusion</p> <p>These findings suggest that CS causes premature emphysema and a decline of lung function in mice susceptible to cardiovascular abnormalities via abnormal lung inflammation, increased oxidative stress and alterations in levels of MMPs and eNOS.</p

    Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases

    Get PDF
    Significance: Chronic obstructive pulmonary disease (COPD) is predominantly a tobacco smoke-triggered disease with features of chronic low-grade systemic inflammation and aging (inflammaging) of the lung associated with steroid resistance induced by cigarette smoke (CS)-mediated oxidative stress. Oxidative stress induces various kinase signaling pathways leading to chromatin modifications (histone acetylation/deacetylation and histone methylation/demethylation) in inflammation, senescence, and steroid resistance. Recent Advances: Histone mono-, di-, or tri-methylation at lysine residues result in either gene activation (H3K4, H3K36, and H3K79) or repression (H3K9, H3K27, and H3K20). Cross-talk occurs between various epigenetic marks on histones and DNA methylation. Both CS and oxidants alter histone acetylation/deacetylation and methylation/demethylation leading to enhanced proinflammatory gene expression. Chromatin modifications occur in lungs of patients with COPD. Histone deacetylase 2 (HDAC2) reduction (levels and activity) is associated with steroid resistance in response to oxidative stress. Critical Issues: Histone modifications are associated with DNA damage/repair and epigenomic instability as well as premature lung aging, which have implications in the pathogenesis of COPD. HDAC2/SIRTUIN1 (SIRT1)-dependent chromatin modifications are associated with DNA damage-induced inflammation and senescence in response to CS-mediated oxidative stress. Future Directions: Understanding CS/oxidative stress-mediated chromatin modifications and the cross-talk between histone acetylation and methylation will demonstrate the involvement of epigenetic regulation of chromatin remodeling in inflammaging. This will lead to identification of novel epigenetic-based therapies against COPD and other smoking-related lung diseases. Pharmacological activation of HDAC2/SIRT1 or reversal of their oxidative post-translational modifications may offer therapies for treatment of COPD and CS-related diseases based on epigenetic histone modifications. Antioxid. Redox Signal. 18, 1956–1971

    Cellular stress responses and dysfunctional Mitochondrial–cellular senescence, and therapeutics in chronic respiratory diseases

    Get PDF
    The abnormal inflammatory responses due to the lung tissue damage and ineffective repair/resolution in response to the inhaled toxicants result in the pathological changes associated with chronic respiratory diseases. Investigation of such pathophysiological mechanisms provides the opportunity to develop the molecular phenotype-specific diagnostic assays and could help in designing the personalized medicine-based therapeutic approaches against these prevalent diseases. As the central hubs of cell metabolism and energetics, mitochondria integrate cellular responses and interorganellar signaling pathways to maintain cellular and extracellular redox status and the cellular senescence that dictate the lung tissue responses. Specifically, as observed in chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis, the mitochondria-endoplasmic reticulum (ER) crosstalk is disrupted by the inhaled toxicants such as the combustible and emerging electronic nicotine-delivery system (ENDS) tobacco products. Thus, the recent research efforts have focused on understanding how the mitochondria-ER dysfunctions and oxidative stress responses can be targeted to improve inflammatory and cellular dysfunctions associated with these pathologic illnesses that are exacerbated by viral infections. The present review assesses the importance of these redox signaling and cellular senescence pathways that describe the role of mitochondria and ER on the development and function of lung epithelial responses, highlighting the cause and effect associations that reflect the disease pathogenesis and possible intervention strategies

    Nrf2 deficiency influences susceptibility to steroid resistance via HDAC2 reduction

    Get PDF
    Abnormal lung inflammation and oxidant burden are associated with a significant reduction in histone deacetylase 2 (HDAC2) abundance and steroid resistance. We hypothesized that Nrf2 regulates steroid sensitivity via HDAC2 in response to inflammation in mouse lung. Furthermore, HDAC2 deficiency leads to steroid resistance in attenuating lung inflammatory response, which may be due to oxidant/antioxidant imbalance. Loss of antioxidant transcription factor Nrf2 resulted in decreased HDAC2 in lung, and increased inflammatory lung response which was not reversed by steroid. Thus, steroid resistance or inability of steroids to control lung inflammatory response is dependent on Nrf2-HDAC2 axis. These findings have implications in steroid resistance, particularly during the conditions of oxidative stress when the lungs are more susceptible to inflammatory response, which is seen in patients with chronic obstructive pulmonary disease, asthma, rheumatoid arthritis, and inflammatory bowel disease
    corecore