5 research outputs found

    Environmental abundances of the non-native round goby Neogobius melanostomus influence feeding of native fish predators

    Get PDF
    The authors assessed the importance of the round goby Neogobius melanostomus as prey for three native predatory fish species, Atlantic cod Gadus morhua, European perch Perca fluviatilis and northern pike Esox lucius, in a northern and southern area of the Baltic Proper, using a combination of visual analysis and DNA metabarcoding of predator stomach contents. To explore the influence of environmental abundances of N. melanostomus on predation, they related the occurrence of N. melanostomus in predator diets to its abundance in survey fishing. Gadus morhua and E. lucius in the southern area showed the highest tendency to feed on N. melanostomus when it was abundant, as N. melanostomus occurred in up to 100% of stomachs and constituted up to 88% of the total diet volume proportion. The diet contribution of N. melanostomus was associated with N. melanostomus abundances for G. morhua and E. lucius, and when N. melanostomus was abundant, these predators exhibited lower prey richness and a higher degree of piscivory. G. morhua and P. fluviatilis also fed less on crustacean prey when N. melanostomus was abundant. The high importance of N. melanostomus in diets of native fish predators may modify indirect interactions between N. melanostomus and native prey species in invaded coastal communities

    Detection of multiple fish species in the diet of the invasive round goby reveals new trophic interactions in the Baltic Sea

    Get PDF
    The mesopredatory round goby (Neogobius melanostomus) is an important fish invader in fresh and brackish waters of the northern hemisphere. Trophic interactions of invasive species can generate ecological impacts across the food web in invaded ecosystems. Here we investigated major diet components, spatiotemporal variation in diet and the effect of round goby densities on diet composition in two geographically distinct round goby populations in the Baltic Sea. The round goby is a generalist feeder but previous diet studies, based on visual prey identification, have likely over-emphasized the importance of hard-shelled, invertebrate prey in round goby diet, as shells degrade and evacuate slowly relative to soft-bodied prey that break down rapidly in the stomach. We therefore, in addition to visual stomach content analysis, used DNA metabarcoding, which is less biased towards hard body structures of prey and can be used for species assignment of highly degraded prey. The results demonstrated that round goby diet composition varied between areas and years. Visual stomach content analysis indicated that blue mussel was the main prey in the southern area, whereas hydrobiid gastropods were the major diet component in the northern area. Metabarcoding revealed that several fish species, likely the egg or larval stages of e.g. stickleback, cod and herring, were also part of the round goby diet. Analyses suggested that round goby feeding on fishes was positively associated with round goby densities. Our study shows that round goby, in addition to benthic invertebrates, preys on several fish species of ecological and commercial importance. Thus, there is potential for predator-prey reversal and negative effects of the invasive round goby on large, predatory fishes

    Detection of multiple fish species in the diet of the invasive round goby reveals new trophic interactions in the Baltic Sea

    No full text
    The mesopredatory round goby (Neogobius melanostomus) is an important fish invader in fresh and brackish waters of the northern hemisphere. Trophic interactions of invasive species can generate ecological impacts across the food web in invaded ecosystems. Here we investigated major diet components, spatiotemporal variation in diet and the effect of round goby densities on diet composition in two geographically distinct round goby populations in the Baltic Sea. The round goby is a generalist feeder but previous diet studies, based on visual prey identification, have likely over-emphasized the importance of hard-shelled, invertebrate prey in round goby diet, as shells degrade and evacuate slowly relative to soft-bodied prey that break down rapidly in the stomach. We therefore, in addition to visual stomach content analysis, used DNA metabarcoding, which is less biased towards hard body structures of prey and can be used for species assignment of highly degraded prey. The results demonstrated that round goby diet composition varied between areas and years. Visual stomach content analysis indicated that blue mussel was the main prey in the southern area, whereas hydrobiid gastropods were the major diet component in the northern area. Metabarcoding revealed that several fish species, likely the egg or larval stages of e.g. stickleback, cod and herring, were also part of the round goby diet. Analyses suggested that round goby feeding on fishes was positively associated with round goby densities. Our study shows that round goby, in addition to benthic invertebrates, preys on several fish species of ecological and commercial importance. Thus, there is potential for predator-prey reversal and negative effects of the invasive round goby on large, predatory fishes

    Environmental abundances of the non-native round goby Neogobius melanostomus influence feeding of native fish predators

    No full text
    The authors assessed the importance of the round goby Neogobius melanostomus as prey for three native predatory fish species, Atlantic cod Gadus morhua, European perch Perca fluviatilis and northern pike Esox lucius, in a northern and southern area of the Baltic Proper, using a combination of visual analysis and DNA metabarcoding of predator stomach contents. To explore the influence of environmental abundances of N. melanostomus on predation, they related the occurrence of N. melanostomus in predator diets to its abundance in survey fishing. Gadus morhua and E. lucius in the southern area showed the highest tendency to feed on N. melanostomus when it was abundant, as N. melanostomus occurred in up to 100% of stomachs and constituted up to 88% of the total diet volume proportion. The diet contribution of N. melanostomus was associated with N. melanostomus abundances for G. morhua and E. lucius, and when N. melanostomus was abundant, these predators exhibited lower prey richness and a higher degree of piscivory. G. morhua and P. fluviatilis also fed less on crustacean prey when N. melanostomus was abundant. The high importance of N. melanostomus in diets of native fish predators may modify indirect interactions between N. melanostomus and native prey species in invaded coastal communities
    corecore