484 research outputs found

    BIOMECHANICS OF TECHNIQUE SELECTION IN WOMEN’S ARTISTIC GYMNASTICS: FROM THEORY TO PRACTICE

    Get PDF
    This research aimed to determine effective technique selection for the female longswing through four themes: contemporary trend (T1), biomechanical conceptual (T2), musculoskeletal (T3) and energetic (T4) approaches. 3D video data at two elite competitions provided high ecologically validity. T1 identified the straddle Tkachev as the ideal vehicle with three distinct preparatory techniques (arch, pike, straddle) preceding it. Significant joint kinematic differences were not replicated in release parameters (T2) although joint kinetics highlighted greater physical demands in the pike (T3), with an energetics effectiveness score highlighting the arch as a technique promoting skill development (T4). Increasing knowledge and understanding allows coaches to optimise technique selection

    Periodic variability of spotted M dwarfs in WTS

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.We present an analysis of the photometric variability of M dwarfs in the WFCAM Transit Survey, selected from spectral types inferred by their WTS and SDSS colours, with periods detected using a Lomb-Scargle Periodogram Analisys. We estimate population membership of these objects from their tangential velocities and photometric parralaxes. Examples of M dwarfs with variable light curve morphologuies are found. We discuss possible causes for this and make use of models of spotted stars in our interpretation of the results

    A new look at energy release rates for quasistatically propagating cracks in inelastic materials

    Full text link
    A mapping technique is used to derive an integral expression for the energy release rate for a quasistatically propagating crack. The derivation does not depend on any assumptions in regard to the contitutive behavior of the material. It leads to a contour integral around the crack tip, plus an area integral over the region enclosed by this contour. Only the stress and displacement fields appear in the integrands. Although for stationary crack solutions known to the authors the area integral is not convergent, for propagating crack solutions in elastoplastic material, the integrals are convergent, and lead to zero energy release rate. This confirms conclusions by Rice from an independent point of view.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42773/1/10704_2004_Article_BF00012388.pd

    Extragalactic Foregrounds of the Cosmic Microwave Background: Prospects for the MAP Mission

    Get PDF
    (Abridged) While the major contribution to the Cosmic Microwave Background (CMB) anisotropies are the sought-after primordial fluctuations produced at the surface of last scattering, other effects produce secondary fluctuations at lower redshifts. Here, we study the extragalactic foregrounds of the CMB in the context of the upcoming MAP mission. We first survey the major extragalactic foregrounds and show that discrete sources, the Sunyaev-Zel'dovich (SZ) effect, and gravitational lensing are the most dominant ones for MAP. We then show that MAP will detect (>5 sigma) about 46 discrete sources and 10 SZ clusters directly with 94 GHz fluxes above 2 Jy. The mean SZ fluxes of fainter clusters can be probed by cross-correlating MAP with cluster positions extracted from existing catalogs. For instance, a MAP-XBACs cross-correlation will be sensitive to clusters with S(94GHz)>200mJy, and will thus provide a test of their virialization state and a measurement of their gas fraction. Finally, we consider probing the hot gas on supercluster scales by cross-correlating the CMB with galaxy catalogs. Assuming that galaxies trace the gas, we show that a cross-correlation between MAP and the APM catalog should yield a marginal detection, or at least a four-fold improvement on the COBE upper limits for the rms Compton y-parameter.Comment: 27 LaTeX pages, including 5 ps figures and 2 tables. To appear in ApJ. Minor revisions to match accepted version. Color figures and further links available at http://www.astro.princeton.edu/~refreg

    A Compact Beam Stop for a Rare Kaon Decay Experiment

    Get PDF
    We describe the development and testing of a novel beam stop for use in a rare kaon decay experiment at the Brookhaven AGS. The beam stop is located inside a dipole spectrometer magnet in close proximity to straw drift chambers and intercepts a high-intensity neutral hadron beam. The design process, involving both Monte Carlo simulations and beam tests of alternative beam-stop shielding arrangements, had the goal of minimizing the leakage of particles from the beam stop and the resulting hit rates in detectors, while preserving maximum acceptance for events of interest. The beam tests consisted of measurements of rates in drift chambers, scintilation counter hodoscopes, a gas threshold Cherenkov counter, and a lead glass array. Measurements were also made with a set of specialized detectors which were sensitive to low-energy neutrons, photons, and charged particles. Comparisons are made between these measurements and a detailed Monte Carlo simulation.Comment: 39 pages, 14 figures, submitted to Nuclear Instruments and Method

    A straw drift chamber spectrometer for studies of rare kaon decays

    Full text link
    We describe the design, construction, readout, tests, and performance of planar drift chambers, based on 5 mm diameter copperized Mylar and Kapton straws, used in an experimental search for rare kaon decays. The experiment took place in the high-intensity neutral beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, using a neutral beam stop, two analyzing dipoles, and redundant particle identification to remove backgrounds

    On the Path of a Quasi-static Crack in Mode III

    Get PDF
    A method for finding the path of a quasi-static crack growing in a brittle body is presented. The propagation process is modelled by a sequence of discrete steps optimizing the elastic energy released. An explicit relationship between the optimal growing direction and the parameters defining the local elastic field around the tip is obtained for an anti-plane field. This allows to describe a simple algorithm to compute the crack path

    Palaeontology, the biogeohistory of Victoria

    Full text link
    The broad-scale distribution of fossils within Victoria is controlled by general global patterns in the biological evolution of life on Earth, the local development and environmental evolution of habitats, and the occurrence of geological processes conducive to the preservation of fossil floras and faunas. Early Palaeozoic fossils are mostly marine in origin because of the predominance of marine sedimentary rocks in Victoria and because life on land was not significant during most of this time interval. Middle Palaeozoic sequences have both terrestrial and marine fossil records. Within Victoria, marine rocks are only very minor components of strata deposited during the late Palaeozoic, so that few marine fossils are known from this time period. A similar situation existed during most of the Mesozoic except towards the end of this era when marine conditions began to prevail in the Bass Strait region. During long intervals in the Cainozoic, large areas of Victoria were flooded by shallow-marine seas, particularly in the southern basins of Bass Strait, as well as in the northwest of the State (Murray Basin). Cainozoic sediments contain an extraordinary range of animal and plant fossils. During the Quaternary, the landscape of Victoria became, and continues to be, dominated by continental environments including, at times, extensive freshwater lake systems. Fossil floras and faunas from sediments deposited in these lake systems and from other continental sediments, as well as from Quaternary sediments deposited in marginal marine environments, collectively record a history of rapid fluctuations in climate and sea level.<br /

    SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    Full text link
    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r=0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the "Southern Hole." We show that two ~20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight schedule updated, two typos fixed in Table 2, references and minor clarifications added, results unchange
    • …
    corecore