15 research outputs found

    Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.)

    Get PDF
    [EN] Ultrasound has been used to intensify the extraction of phenolic compounds from many agro-food products. However, there is still a lack of understanding on how the ultrasonic energy is influenced by blends of different solvents and how this impacts the extraction process. This work studied the effect of ethanol, acetone and hexane blends on the ultrasonic power density (UPD) generated during the extraction of phenolic compounds from Mango peel, using an ultrasonic-assisted extraction (UAE) and a conventional solvent extraction (CSE). A simplex centroid mixture design and a special cubic regression model were used to evaluate the total phenolic compounds (TPC), antioxidant activity (AA) and ultrasonic intensity (UI) as a function of the solvents proportions. The greatest TPC was obtained with the ethanol-acetone blend (60-40%) for CSE (205.08 mg GAE/100 g DM) and UAE (1493.01 mg GAE/100 g DM). Likewise, an increase (avg. 630%) was observed in TPC when the ultrasound was applied for all solvents and their blends. The TPC showed a good correlation (r=0.81) with the UPD, with higher UPD resulting in larger amounts of TPC extracted. Nevertheless, for the ethanol-acetone blend there was a decrease of 14.2% of the AA for the UAE, which could be due to the sonochemical reactions taking place at the high UPD achieved for that blend. The results of this work indicate that the solvent composition and use of ultrasound should be carefully selected to achieve the desired extraction objectives.The authors acknowledge the Ph.D. grant of Tania Martinez Ramos (CVU 580569) from the "Consejo Nacional de Ciencia y Tecnologia (CONACYT)" and the financial support from the Vicerrectoria de Investigacion y Estudios de Posgrado (VIEP-BUAP) through the "Programa Institucional para la Consolidacion de los Cuerpos Academicos y Conformacion de Redes de Investigacion".Martínez-Ramos, T.; Benedito Fort, JJ.; Watson, NJ.; Ruiz-López, II.; Che-Galicia, G.; Corona-Jiménez, E. (2020). Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.). Food and Bioproducts Processing. 122:41-54. https://doi.org/10.1016/j.fbp.2020.03.011S4154122Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E., & El-Hamahmy, R. M. (2007). Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chemistry, 103(4), 1134-1140. doi:10.1016/j.foodchem.2006.10.017Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319-326. doi:10.1016/j.jcs.2007.10.001AJILA, C., NAIDU, K., BHAT, S., & RAO, U. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry, 105(3), 982-988. doi:10.1016/j.foodchem.2007.04.052Arnao, M. B. (2000). Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science & Technology, 11(11), 419-421. doi:10.1016/s0924-2244(01)00027-9Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5Burton-Freeman, B. M., Sandhu, A. K., & Edirisinghe, I. (2017). Mangos and their bioactive components: adding variety to the fruit plate for health. Food & Function, 8(9), 3010-3032. doi:10.1039/c7fo00190hButkhup, L., Samappito, W., & Samappito, S. (2012). Phenolic composition and antioxidant activity of white mulberry (Morus albaL.) fruits. International Journal of Food Science & Technology, 48(5), 934-940. doi:10.1111/ijfs.12044Cassol, L., Rodrigues, E., & Zapata Noreña, C. P. (2019). Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave assisted extraction. Industrial Crops and Products, 133, 168-177. doi:10.1016/j.indcrop.2019.03.023Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. doi:10.1016/j.ultsonch.2016.06.035Cheng, X., Zhang, M., Adhikari, B., Islam, M. N., & Xu, B. (2014). Effect of ultrasound irradiation on some freezing parameters of ultrasound-assisted immersion freezing of strawberries. International Journal of Refrigeration, 44, 49-55. doi:10.1016/j.ijrefrig.2014.04.017Chivate, M. M., & Pandit, A. B. (1995). Quantification of cavitation intensity in fluid bulk. Ultrasonics Sonochemistry, 2(1), S19-S25. doi:10.1016/1350-4177(94)00007-fCravotto, G., & Cintas, P. (2006). Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev., 35(2), 180-196. doi:10.1039/b503848kDa Porto, C., Porretto, E., & Decorti, D. (2013). Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics Sonochemistry, 20(4), 1076-1080. doi:10.1016/j.ultsonch.2012.12.002Deng, J., Xu, Z., Xiang, C., Liu, J., Zhou, L., Li, T., … Ding, C. (2017). Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrasonics Sonochemistry, 37, 328-334. doi:10.1016/j.ultsonch.2017.01.023Dias, F. F. G., de Castro, R. J. S., Ohara, A., Nishide, T. G., Bagagli, M. P., & Sato, H. H. (2015). Simplex centroid mixture design to improve l -asparaginase production in solid-state fermentation using agroindustrial wastes. Biocatalysis and Agricultural Biotechnology, 4(4), 528-534. doi:10.1016/j.bcab.2015.09.011Dubie, J., Stancik, A., Morra, M., & Nindo, C. (2013). Antioxidant Extraction from Mustard (Brassica juncea) Seed Meal Using High-Intensity Ultrasound. Journal of Food Science, 78(4), E542-E548. doi:10.1111/1750-3841.12085Fu, L., Xu, B.-T., Xu, X.-R., Gan, R.-Y., Zhang, Y., Xia, E.-Q., & Li, H.-B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129(2), 345-350. doi:10.1016/j.foodchem.2011.04.079Gallego, R., Bueno, M., & Herrero, M. (2019). Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update. TrAC Trends in Analytical Chemistry, 116, 198-213. doi:10.1016/j.trac.2019.04.030Gómez-Caravaca, A. M., López-Cobo, A., Verardo, V., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2016). HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk). ELECTROPHORESIS, 37(7-8), 1072-1084. doi:10.1002/elps.201500439González-Centeno, M. R., Knoerzer, K., Sabarez, H., Simal, S., Rosselló, C., & Femenia, A. (2014). Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) – A response surface approach. Ultrasonics Sonochemistry, 21(6), 2176-2184. doi:10.1016/j.ultsonch.2014.01.021Guandalini, B. B. V., Rodrigues, N. P., & Marczak, L. D. F. (2019). Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Research International, 119, 455-461. doi:10.1016/j.foodres.2018.12.011Gülçin, İ. (2011). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345-391. doi:10.1007/s00204-011-0774-2He, B., Zhang, L.-L., Yue, X.-Y., Liang, J., Jiang, J., Gao, X.-L., & Yue, P.-X. (2016). Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry ( Vaccinium ashei ) wine pomace. Food Chemistry, 204, 70-76. doi:10.1016/j.foodchem.2016.02.094Hoyos-Arbeláez, J., Blandón-Naranjo, L., Vázquez, M., & Contreras-Calderón, J. (2018). Antioxidant capacity of mango fruit (Mangifera indica). An electrochemical study as an approach to the spectrophotometric methods. Food Chemistry, 266, 435-440. doi:10.1016/j.foodchem.2018.06.044Jahurul, M. H. A., Zaidul, I. S. M., Ghafoor, K., Al-Juhaimi, F. Y., Nyam, K.-L., Norulaini, N. A. N., … Mohd Omar, A. K. (2015). Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chemistry, 183, 173-180. doi:10.1016/j.foodchem.2015.03.046Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J.-P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954-3962. doi:10.1021/jf990146lKaradag, A., Ozcelik, B., & Saner, S. (2009). Review of Methods to Determine Antioxidant Capacities. Food Analytical Methods, 2(1), 41-60. doi:10.1007/s12161-008-9067-7Kendall, J., & Monroe, K. P. (1917). THE VISCOSITY OF LIQUIDS. II. THE VISCOSITY-COMPOSITION CURVE FOR IDEAL LIQUID MIXTURES.1. Journal of the American Chemical Society, 39(9), 1787-1802. doi:10.1021/ja02254a001Khemakhem, I., Ahmad-Qasem, M. H., Catalán, E. B., Micol, V., García-Pérez, J. V., Ayadi, M. A., & Bouaziz, M. (2017). Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrasonics Sonochemistry, 34, 466-473. doi:10.1016/j.ultsonch.2016.06.010Kugel, R. W. (1998). Raoult’s Law: Binary Liquid-Vapor Phase Diagrams: A Simple Physical Chemistry Experiment. Journal of Chemical Education, 75(9), 1125. doi:10.1021/ed075p1125Li, H., Pordesimo, L., & Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37(7), 731-738. doi:10.1016/j.foodres.2004.02.016Lim, S., Choi, A.-H., Kwon, M., Joung, E.-J., Shin, T., Lee, S.-G., … Kim, H.-R. (2019). Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. Food Chemistry, 278, 178-184. doi:10.1016/j.foodchem.2018.11.058Liu, Y., Wei, S., Wu, M., & Yang, S. (2017). Phenolic compounds from date pits: ultrasonic-assisted extraction, antioxidant activity and component identification. Journal of Food Measurement and Characterization, 12(2), 967-973. doi:10.1007/s11694-017-9711-2Lobo, F. A., Nascimento, M. A., Domingues, J. R., Falcão, D. Q., Hernanz, D., Heredia, F. J., & de Lima Araujo, K. G. (2017). Foam mat drying of Tommy Atkins mango: Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. Food Chemistry, 221, 258-266. doi:10.1016/j.foodchem.2016.10.080Lupacchini, M., Mascitti, A., Giachi, G., Tonucci, L., d’ Alessandro, N., Martinez, J., & Colacino, E. (2017). Sonochemistry in non-conventional, green solvents or solvent-free reactions. Tetrahedron, 73(6), 609-653. doi:10.1016/j.tet.2016.12.014Meneses, M. A., Caputo, G., Scognamiglio, M., Reverchon, E., & Adami, R. (2015). Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction. Journal of Food Engineering, 163, 45-53. doi:10.1016/j.jfoodeng.2015.04.025Meneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology, 108, 152-158. doi:10.1016/j.seppur.2013.02.015Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A Novel Method for Measuring Antioxidant Capacity and its Application to Monitoring the Antioxidant Status in Premature Neonates. Clinical Science, 84(4), 407-412. doi:10.1042/cs0840407Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology, 162, 68-76. doi:10.1016/j.seppur.2016.01.043Moreira, G. C., & de Souza Dias, F. (2018). Mixture design and Doehlert matrix for optimization of the ultrasonic assisted extraction of caffeic acid, rutin, catechin and trans-cinnamic acid in Physalis angulata L. and determination by HPLC DAD. Microchemical Journal, 141, 247-252. doi:10.1016/j.microc.2018.04.035Nguyen, V. T., Bowyer, M. C., Vuong, Q. V., Altena, I. A. V., & Scarlett, C. J. (2015). Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Industrial Crops and Products, 67, 192-200. doi:10.1016/j.indcrop.2015.01.051Pimentel-Moral, S., Borrás-Linares, I., Lozano-Sánchez, J., Arráez-Román, D., Martínez-Férez, A., & Segura-Carretero, A. (2019). Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. The Journal of Supercritical Fluids, 147, 213-221. doi:10.1016/j.supflu.2018.11.005Rezaie, M., Farhoosh, R., Iranshahi, M., Sharif, A., & Golmohamadzadeh, S. (2015). Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chemistry, 173, 577-583. doi:10.1016/j.foodchem.2014.10.081Rodsamran, P., & Sothornvit, R. (2019). Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience, 28, 66-73. doi:10.1016/j.fbio.2019.01.017Santana, Á. L., Queirós, L. D., Martínez, J., & Macedo, G. A. (2019). Pressurized liquid- and supercritical fluid extraction of crude and waste seeds of guarana (Paullinia cupana): Obtaining of bioactive compounds and mathematical modeling. Food and Bioproducts Processing, 117, 194-202. doi:10.1016/j.fbp.2019.07.007Setyaningsih, W., Saputro, I. E., Carrera, C. A., & Palma, M. (2019). Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chemistry, 288, 221-227. doi:10.1016/j.foodchem.2019.02.107Song, H., Yang, R., Zhao, W., Katiyo, W., Hua, X., & Zhang, W. (2014). Innovative Assistant Extraction of Flavonoids from Pine (Larix olgensis Henry) Needles by High-Density Steam Flash-Explosion. Journal of Agricultural and Food Chemistry, 62(17), 3806-3812. doi:10.1021/jf405412rSridhar, K., & Charles, A. L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry, 275, 41-49. doi:10.1016/j.foodchem.2018.09.040Sumere, B. R., de Souza, M. C., dos Santos, M. P., Bezerra, R. M. N., da Cunha, D. T., Martinez, J., & Rostagno, M. A. (2018). Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrasonics Sonochemistry, 48, 151-162. doi:10.1016/j.ultsonch.2018.05.028Taghizadeh, S. F., Rezaee, R., Davarynejad, G., Karimi, G., Nemati, S. H., & Asili, J. (2018). Phenolic profile and antioxidant activity of Pistacia vera var. Sarakhs hull and kernel extracts: the influence of different solvents. Journal of Food Measurement and Characterization, 12(3), 2138-2144. doi:10.1007/s11694-018-9829-xTeja, A. S. (1983). Simple method for the calculation of heat capacities of liquid mixtures. Journal of Chemical & Engineering Data, 28(1), 83-85. doi:10.1021/je00031a025Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109. doi:10.1016/j.trac.2015.04.013Wen, C., Zhang, J., Zhang, H., Dzah, C. S., Zandile, M., Duan, Y., … Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrasonics Sonochemistry, 48, 538-549. doi:10.1016/j.ultsonch.2018.07.018Wijekoon, M. M. J. O., Bhat, R., & Karim, A. A. (2011). Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack.) inflorescence. Journal of Food Composition and Analysis, 24(4-5), 615-619. doi:10.1016/j.jfca.2010.09.018Winterfeld, P. H., Scriven, L. E., & Davis, H. T. (1978). An approximate theory of interfacial tensions of multicomponent systems: Applications to binary liquid-vapor tensions. AIChE Journal, 24(6), 1010-1014. doi:10.1002/aic.690240610Yusof, N. S. M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J., & Ashokkumar, M. (2016). Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry, 29, 568-576. doi:10.1016/j.ultsonch.2015.06.01

    Ratios of Helicity Amplitudes for Exclusive ρ0\rho^0 Electroproduction

    Get PDF
    Exclusive rho^0-meson electroproduction is studied in the HERMES experiment, using a 27.6 GeV longitudinally polarized electron/positron beam and unpolarized hydrogen and deuterium targets in the kinematic region 0.5 GeV^2 < Q^2 < 7.0 GeV^2, 3.0 GeV < W < 6.3 GeV, and -t' < 0.4 GeV^2. Real and imaginary parts of the ratios of the natural-parity-exchange helicity amplitudes T_{11} (\gamma^*_T --> \rho_T), T_{01} (\gamma^*_T --> \rho_L), T_{10} (\gamma^*_L --> \rho_T), and T_{1-1} (\gamma^*_{-T} -->\rho_T) to T_{00} (\gamma^*_L --> \rho_L) are extracted from the data. For the unnatural-parity-exchange amplitude U_{11}, the ratio |U_{11}/T_{00}| is obtained. The Q^2 and t' dependences of these ratios are presented and compared with perturbative QCD predictions.Comment: 27 pages, 8 tables, 13 figures; minor textual changes on pages 2, 3,9, 10, 11, and some changes to the list of reference

    Mathematical Modeling Used to Evaluate the Effect of UV-C Light Treatment on Microorganisms in Liquid Foods

    No full text

    Intravenous NPA for the treatment of infarcting myocardium early: InTIME-II, a double-blind comparison on of single-bolus lanoteplase vs accelerated alteplase for the treatment of patients with acute myocardial infarction

    No full text
    Aims to compare the efficacy and safety of lanoteplase, a single-bolus thrombolytic drug derived from alteplase tissue plasminogen activator, with the established accelerated alteplase regimen in patients presenting within 6 h of onset of ST elevation acute myocardial infarction. Methods and Results 15 078 patients were recruited from 855 hospitals worldwide and randomized in a 2:1 ratio to receive either lanoteplase 120 KU. kg-1 as a single intravenous bolus, or up to 100 mg accelerated alteplase given over 90 min. The primary end-point was all-cause mortality at 30 days and the hypothesis was that the two treatments would be equivalent. By 30 days, 6.61% of alteplase-treated patients and 6.75% lanoteplase-treated patients had died (relative risk 1.02). Total stroke occurred in 1.53% alteplase- and 1.87% lanoteplase-treated patients (ns); haemorrhagic stroke rates were 0.64% alteplase and 1.12% lanoteplase (P=0.004). The net clinical deficit of 30-day death or non-fatal disabling stroke was 7.0% and 7.2%, respectively. By 6 months, 8.8% of alteplase-treated patients and 8.7% of lanoteplase-treated patients had died. Conclusion Single-bolus weight-adjusted lanoteplase is an effective thrombolytic agent, equivalent to alteplase in terms of its impact on survival and with a comparable risk-benefit profile. The single-bolus regimen should shorten symptoms to treatment times and be especially convenient for emergency department or out-of-hospital administration. (C) 2000 The European Society of Cardiology

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present
    corecore