23 research outputs found

    Development of Eosinophilic Airway Inflammation and Airway Hyperresponsiveness in Mast Cell–deficient Mice

    Get PDF
    Mast cells are the main effector cells of immediate hypersensitivity and anaphylaxis. Their role in the development of allergen-induced airway hyperresponsiveness (AHR) is controversial and based on indirect evidence. To address these issues, mast cell–deficient mice (W/W  v) and their congenic littermates were sensitized to ovalbumin (OVA) by intraperitoneal injection and subsequently challenged with OVA via the airways. Comparison of OVA-specific immunoglobulin E (IgE) levels in the serum and numbers of eosinophils in bronchoalveolar lavage fluid or lung digests showed no differences between the two groups of mice. Further, measurements of airway resistance and dynamic compliance at baseline and after inhalation of methacholine were similar. These data indicate that mast cells or IgE–mast cell activation is not required for the development of eosinophilic inflammation and AHR in mice sensitized to allergen via the intraperitoneal route and challenged via the airways

    Multi-ethnic GWAS and fine-mapping of glycaemic traits identify novel loci in the PAGE Study

    Get PDF
    Aims/hypothesis: Type 2 diabetes is a growing global public health challenge. Investigating quantitative traits, including fasting glucose, fasting insulin and HbA1c, that serve as early markers of type 2 diabetes progression may lead to a deeper understanding of the genetic aetiology of type 2 diabetes development. Previous genome-wide association studies (GWAS) have identified over 500 loci associated with type 2 diabetes, glycaemic traits and insulin-related traits. However, most of these findings were based only on populations of European ancestry. To address this research gap, we examined the genetic basis of fasting glucose, fasting insulin and HbA1c in participants of the diverse Population Architecture using Genomics and Epidemiology (PAGE) Study. Methods: We conducted a GWAS of fasting glucose (n = 52,267), fasting insulin (n = 48,395) and HbA1c (n = 23,357) in participants without diabetes from the diverse PAGE Study (23% self-reported African American, 46% Hispanic/Latino, 40% European, 4% Asian, 3% Native Hawaiian, 0.8% Native American), performing transethnic and population-specific GWAS meta-analyses, followed by fine-mapping to identify and characterise novel loci and independent secondary signals in known loci. Results: Four novel associations were identified (p < 5 × 10−9), including three loci associated with fasting insulin, and a novel, low-frequency African American-specific locus associated with fasting glucose. Additionally, seven secondary signals were identified, including novel independent secondary signals for fasting glucose at the known GCK locus and for fasting insulin at the known PPP1R3B locus in transethnic meta-analysis. Conclusions/interpretation: Our findings provide new insights into the genetic architecture of glycaemic traits and highlight the continued importance of conducting genetic studies in diverse populations. Data availability: Full summary statistics from each of the population-specific and transethnic results are available at NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/downloads/summary-statistics)

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWASs for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally diverse individuals (European, African, Asian, and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole-genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n = 109,122 individuals. We identified 59 sentinel variants (p &lt; 5 × 10−9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated that the independent signals colocalized with cell-type-specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated that our TL polygenic trait scores (PTSs) were associated with an increased risk of cancer-related phenotypes

    Probabilistic Modeling for Structural Change Inference

    No full text
    We view the task of change detection as a problem of object recognition from learning. The object is defined in a 3D space where the time is the 3rd dimension. We propose two competitive probabilistic models. The first one has a traditional regard on change, characterized as a 'presence-absence' within two scenes. The model is based on a logistic function, embedded in a framework called 'cut-and-merge'. The second approach is inspired from the Discriminative Random Fields (DRF) approach proposed by Ma and Hebert [KUMA2003]. The energy function is defined as the sum of an association potential and an interaction potential. We formulate the latter as a 3D anisotropic term. A simplified implementation enables to achieve fast computation in the 2D image space. In conclusion, the main contributions of this paper rely on : 1) the extension of the DRF to a 3D manifold ; 2) the cut-and-merge algorithm. The application proposed in the paper is on remote sensing images, for building change detection. Results on synthetic and real scenes and comparative analysis demonstrate the effectiveness of the proposed approach

    Catalase overexpression fails to attenuate allergic airways disease in the mouse

    No full text
    Oxidative stress is a hallmark of asthma, and increased levels of oxidants are considered markers of the inflammatory process. Most studies to date addressing the role of oxidants in the etiology of asthma were based on the therapeutic administration of low m.w. antioxidants or antioxidant mimetic compounds. To directly address the function of endogenous hydrogen peroxide in the pathophysiology of allergic airway disease, we comparatively evaluated mice systemically overexpressing catalase, a major antioxidant enzyme that detoxifies hydrogen peroxide, and C57BL/6 strain matched controls in the OVA model of allergic airways disease. Catalase transgenic mice had 8-fold increases in catalase activity in lung tissue, and had lowered DCF oxidation in tracheal epithelial cells, compared with C57BL/6 controls. Despite these differences, both strains showed similar increases in OVA-specific IgE, IgG1, and IgG2a levels, comparable airway and tissue inflammation, and identical increases in procollagen 1 mRNA expression, following sensitization and challenge with OVA. Unexpectedly, mRNA expression of MUC5AC and CLCA3 genes were enhanced in catalase transgenic mice, compared with C57BL/6 mice subjected to Ag. Furthermore, when compared with control mice, catalase overexpression increased airway hyperresponsiveness to methacholine both in naive mice as well as in response to Ag. In contrast to the prevailing notion that hydrogen peroxide is positively associated with the etiology of allergic airways disease, the current findings suggest that endogenous hydrogen peroxide serves a role in suppressing both mucus production and airway hyperresponsiveness

    Asthma Prevalence and Phenotyping in the General Population: The LEAD (Lung, hEart, sociAl, boDy) Study

    No full text
    Background: Asthma is a chronic heterogeneous respiratory disease involving differential pathophysiological pathways and conse-quently distinct asthma phenotypes.Objective and Methods: In the LEAD Study, a general population cohort (n=11.423) in Vienna ranging from 6-82 years of age, we addressed the prevalence of asthma and explored inflammatory asthma phenotypes that included allergic and non-allergic asthma, and within these phenotypes, an eosinophilic (eosinophils >300 cells/mu L, or >150 cells/mu L in the presence of ICS medication) or non-eosinophilic (eosinophils <300 cells/mu L, or <150 cells/mu L in the presence of ICS) phenotype. In addition, we compared various factors related to biomarkers, body composition, lung function, and symptoms in control subjects versus subjects with current asthma (current doctor's diagnosis of asthma).Results: An overall prevalence of 4.6% was observed for current asthma. Furthermore, an age-dependent shift from allergic to non -allergic asthma was found. The non-eosinophilic phenotype was more prominent. Obesity was a prevalent condition, and body composition including visceral adipose tissue (VAT), is affected in current asthma versus controls.Conclusion: This broad-aged and large general population cohort identified differential patterns of inflammatory asthma phenotypes that were age-dependent. The presence of eosinophilia was associated with worse asthma control, increased asthma medication, increased VAT, and lower lung function, the opposite was found for the presence of an allergic asthma
    corecore