12 research outputs found

    NOTCH1 Mutations in Aortic Stenosis: Association with Osteoprotegerin/RANK/RANKL

    No full text
    Background. The NOTCH pathway is known to be important in the pathogenesis of calcific aortic valve disease, possibly through regulators of osteoprotegerin (OPG), receptor activator of nuclear factor ÎşB (RANK), and its ligand (RANKL) system. The purpose of the present study was to search for possible associations between NOTCH1 gene mutations and circulating levels of OPG and soluble RANKL (sRANKL) in patients with aortic stenosis (AS). Methods. The study was performed on 61 patients with AS including 31 with bicuspid and 30 with tricuspid aortic valves. We applied a strategy of targeted mutation screening for 10 out of 34 exons of the NOTCH1 gene by direct sequencing. Serum OPG and sRANKL levels were assessed. Results. In total, 6 genetic variants of the NOTCH1 gene including two new mutations were identified in the study group. In an age- and arterial hypertension-adjusted multivariable regression analysis, the serum OPG levels and the OPG/sRANKL ratio were correlated with NOTCH1 missense variants. All studied missense variants in NOTCH1 gene were found in Ca(2+)-binding EGF motif of the NOTCH extracellular domain bound to Delta-like 4. Conclusion. Our results suggest that the OPG/RANKL/RANK system might be directly influenced by genetic variants of NOTCH1 in aortic valve calcification

    Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves

    No full text
    Cellular and molecular mechanisms of thoracic aortic aneurysm are not clear and therapeutic approaches are mostly absent. Thoracic aortic aneurysm is associated with defective differentiation of smooth muscle cells (SMC) of aortic wall. Bicuspid aortic valve (BAV) comparing to tricuspid aortic valve (TAV) significantly predisposes to a risk of thoracic aortic aneurysms. It has been suggested recently that BAV-associated aortopathies represent a separate pathology comparing to TAV-associated dilations. The only proven candidate gene that has been associated with BAV remains NOTCH1. In this study we tested the hypothesis that Notch-dependent and related TGF-β and BMP differentiation pathways are differently altered in aortic SMC of BAV- vs. TAV-associated aortic aneurysms. SMC were isolated from aortic tissues of the patients with BAV- or TAV-associated aortic aneurysms and from healthy donors used as controls. Gene expression was verified by qPCR and Western blotting. For TGF-β induced differentiation SMC were treated with the medium containing TGF-β1. To induce proosteogenic signaling we cultured SMC in the presence of specific osteogenic factors. Notch-dependent differentiation was induced via lentiviral transduction of SMC with activated Notch1 domain. MYOCD expression, a master gene of SMC differentiation, was down regulated in SMC of both BAV and TAV patients. Discriminant analysis of gene expression patterns included a set of contractile genes specific for SMC, Notch-related genes and proosteogenic genes and revealed that control cells form a separate cluster from both BAV and TAV group, while BAV- and TAV-derived SMC are partially distinct with some overlapping. In differentiation experiments TGF-β caused similar patterns of target gene expression for BAV- and TAV derived cells while the induction was higher in the diseased cells than in control ones. Osteogenic induction caused significant change in RUNX2 expression exclusively in BAV group. Notch activation induced significant ACTA2 expression also exclusively in BAV group. We show that Notch acts synergistically with proosteogenic factors to induce ACTA2 transcription and osteogenic differentiation. In conclusion we have found differences in responsiveness of SMC to Notch and to proosteogenic induction between BAV- and TAV-associated aortic aneurysms

    Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms

    No full text
    Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, vWF, and VE-cadherin) and smooth muscle (SMA, SM22α, calponin, and vimentin) cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis

    Analysis of Prevalence and Clinical Features of Aortic Stenosis in Patients with and without Bicuspid Aortic Valve Using Machine Learning Methods

    No full text
    Aortic stenosis (AS) is the most commonly diagnosed valvular heart disease, and its prevalence increases with the aging of the general population. However, AS is often diagnosed at a severe stage, necessitating surgical treatment, due to its long asymptomatic period. The objective of this study was to analyze the frequency of AS in a population of cardiovascular patients using echocardiography (ECHO) and to identify clinical factors and features associated with these patient groups. We utilized machine learning methods to analyze 84,851 echocardiograms performed between 2010 and 2018 at the National Medical Research Center named after V.A. Almazov. The primary indications for ECHO were coronary artery disease (CAD) and hypertension (HP), accounting for 33.5% and 14.2% of the cases, respectively. The frequency of AS was found to be 13.26% among the patients (n = 11,252). Within our study, 1544 patients had a bicuspid aortic valve (BAV), while 83,316 patients had a tricuspid aortic valve (TAV). BAV patients were observed to be younger compared to TAV patients. AS was more prevalent in the BAV group (59%) compared to the TAV group (12%), with a p-value of <0.0001. By employing a machine learning algorithm, we randomly identified significant features present in AS patients, including age, hypertension (HP), aortic regurgitation (AR), ascending aortic dilatation (AscAD), and BAV. These findings could serve as additional indications for earlier observation and more frequent ECHO in specific patient groups for the earlier detection of developing AS

    Notch, BMP and WNT/\u3b2-catenin network is impaired in endothelial cells of the patients with thoracic aortic aneurysm

    No full text
    Cellular and molecular mechanisms of thoracic aortic aneurysm are still not clear and therapeutic approaches are mostly absent. The role of endothelial cells in aortic wall integrity is emerging from recent studies. Although Notch pathway ensures endothelial development and integrity, and NOTCH1 mutations have been associated with thoracic aortic aneurysms, the role of this pathway in aneurysm remains elusive. The purpose of the present work was to study functions of Notch genes in endothelial cells of patients with sporadic thoracic aortic aneurysm.Aortic endothelial cells were isolated from aortic tissue of patients with thoracic aortic aneurysm and healthy donors. Gene expression of Notch and related BMP and WNT/beta-catenin pathways was estimated by qPCR; WNT/beta-catenin signaling was studied by TCF-luciferase reporter. To study the stress-response the cells were subjected to laminar shear stress and the expression of corresponding genes was estimated by qPCR.Analyses of mRNA expression of Notch genes, Notch target genes and Notch related pathways showed that endothelial cells of aneurysm patients have dysregulated Notch/BMP/WNT pathways compared to donor cells. Activity of Wnt pathway was significantly elevated in endothelial cells of the patients. Cells from patients had attenuated activation of DLL4, SNAIL1, DKK1 and BMP2 in response to shear stress.In conclusion endothelial cells of the patients with thoracic aortic aneurysm have dysregulated Notch, BMP and WNT/beta-catenin related signaling. Shear stress-response and cross-talk between Notch and Wnt pathways that normally ensures aortic integrity and resistance of endothelial cells to stress is impaired in aneurysmal patients. (c) 2018 Elsevier B.V. All rights reserved
    corecore