574 research outputs found

    Hypervelocity Stars in the Gaia era. Revisiting the most extreme stars from the MMT survey

    Full text link
    The hypervelocity star (HVS) survey conducted at the Multiple Mirror Telescope (MMT) identified 42 B-type stars in the Galactic halo whose radial velocity in the Galactic rest-frame exceeds +275 +275\,km \,s−1{}^{-1}. In order to unravel the nature and origin of those high-velocity outliers, their complete six-dimensional phase space information is needed. To this end, we complemented positions and proper motions from the second data release of {\it Gaia} with revised radial velocities and spectrophotometric distances that are based on a reanalysis of the available MMT spectra of 40 objects using state-of-the-art model spectra and a tailored analysis strategy. The resulting position and velocity vectors for 37 stars were then used as input for a subsequent kinematic investigation to obtain as complete a picture as possible. The combination of projected rotational velocity, position in the Kiel diagram, and kinematic properties suggests that all objects in the sample except two (B576, B598) are very likely to be main sequence stars. While the available data are still not precise enough to constrain the place of origin for 19 program stars, we identified eight objects that either come from the outer rim of the Galactic disk or not from the disk at all, along with ten that presumably stem from the Galactic disk. For almost all of those 18 targets with more or less well-constrained spatial origin, the Galactic center (GC) is disqualified as a possible place of origin. The most notable exception is B576, the origin of which coincides extremely well with the GC when assuming a blue horizontal branch (BHB) nature for it. HVS \,22 is by far the most extreme object in the sample. Although its origin is completely unconstrained, an ejection from the GC by the Hills mechanism is the most plausible explanation for its current Galactic rest-frame velocity of 1530−560+690 1530^{+690}_{-560}\,km \,s−1{}^{-1}

    Hot subdwarf stars and their connection to thermonuclear supernovae

    Get PDF
    Hot subdwarf stars (sdO/Bs) are evolved core helium-burning stars with very thin hydrogen envelopes, which can be formed by common envelope ejection. Close sdB binaries with massive white dwarf (WD) companions are potential progenitors of thermonuclear supernovae type Ia (SN Ia). We discovered such a progenitor candidate as well as a candidate for a surviving companion star, which escapes from the Galaxy. More candidates for both types of objects have been found by crossmatching known sdB stars with proper motion and light curve catalogues. The Gaia mission will provide accurate astrometry and light curves of all the stars in our hot subdwarf sample and will allow us to compile a much larger all-sky catalogue of those stars. In this way we expect to find hundreds of progenitor binaries and ejected companions.Comment: Proceedings of the 11th Pacific Rim Conference on Stellar Astrophysics, Hong Kong 2015, Journal of Physics: Conference Series, in pres

    Candidate hypervelocity stars of spectral type G and K revisited

    Full text link
    Hypervelocity stars (HVS) move so fast that they are unbound to the Galaxy. When they were first discovered in 2005, dynamical ejection from the supermassive black hole (SMBH) in the Galactic Centre (GC) was suggested as their origin. The two dozen HVSs known today are young massive B stars, mostly of 3-4 solar masses. Recently, 20 HVS candidates of low mass were discovered in the Segue G and K dwarf sample, but none of them originates from the GC. We embarked on a kinematic analysis of the Segue HVS candidate sample using the full 6D phase space information based on new proper motion measurements. Their orbital properties can then be derived by tracing back their trajectories in different mass models of our Galaxy. We present the results for 14 candidate HVSs, for which proper motion measurements were possible. Significantly lower proper motions than found in the previous study were derived. Considering three different Galactic mass models we find that all stars are bound to the Galaxy. We confirm that the stars do not originate from the GC. The distribution of their proper motions and radial velocities is consistent with predictions for runaway stars ejected from the Galactic disk by the binary supernova mechanism. However, their kinematics are also consistent with old disk membership. Moreover, most stars have rather low metallicities and strong α\alpha-element enrichment as typical for thick disk and halo stars, whereas the metallicity of the three most metal-rich stars could possibly indicate that they are runaway stars from the thin disk. One star shows halo kinematics.Comment: A&A letter accepte

    Quantitative spectral analysis of the sdB star HD 188112: a helium-core white dwarf progenitor

    Full text link
    HD 188112 is a bright (V = 10.2 mag) hot subdwarf B (sdB) star with a mass too low to ignite core helium burning and is therefore considered as a pre-extremely low mass (ELM) white dwarf (WD). ELM WDs (M ≤\le 0.3 Msun) are He-core objects produced by the evolution of compact binary systems. We present in this paper a detailed abundance analysis of HD 188112 based on high-resolution Hubble Space Telescope (HST) near and far-ultraviolet spectroscopy. We also constrain the mass of the star's companion. We use hybrid non-LTE model atmospheres to fit the observed spectral lines and derive the abundances of more than a dozen elements as well as the rotational broadening of metallic lines. We confirm the previous binary system parameters by combining radial velocities measured in our UV spectra with the already published ones. The system has a period of 0.60658584 days and a WD companion with M ≥\geq 0.70 Msun. By assuming a tidally locked rotation, combined with the projected rotational velocity (v sin i = 7.9 ±\pm 0.3 km s−1^{-1}) we constrain the companion mass to be between 0.9 and 1.3 Msun. We further discuss the future evolution of the system as a potential progenitor of a (underluminous) type Ia supernova. We measure abundances for Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Ni, and Zn, as well as for the trans-iron elements Ga, Sn, and Pb. In addition, we derive upper limits for the C, N, O elements and find HD 188112 to be strongly depleted in carbon. We find evidence of non-LTE effects on the line strength of some ionic species such as Si II and Ni II. The metallic abundances indicate that the star is metal-poor, with an abundance pattern most likely produced by diffusion effects.Comment: Accepted for publication in A&

    PG 1610+062: a runaway B star challenging classical ejection mechanisms

    Get PDF
    Hypervelocity stars are rare objects, mostly main-sequence (MS) B stars, traveling so fast that they will eventually escape from the Milky Way. Recently, it has been shown that the popular Hills mechanism, in which a binary system is disrupted via a close encounter with the supermassive black hole at the Galactic center, may not be their only ejection mechanism. The analyses of Gaia data ruled out a Galactic center origin for some of them, and instead indicated that they are extreme disk runaway stars ejected at velocities exceeding the predicted limits of classical scenarios (dynamical ejection from star clusters or binary supernova ejection). We present the discovery of a new extreme disk runaway star, PG 1610+062, which is a slowly pulsating B star bright enough to be studied in detail. A quantitative analysis of spectra taken with ESI at the Keck Observatory revealed that PG 1610+062 is a late B-type MS star of 4–5 M⊙with low projected rotational velocity. Abundances (C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe) were derived differentially with respect to the normal B star HD 137366 and indicate that PG 1610+062 is somewhat metal rich. A kinematic analysis, based on our spectrophotometric distance (17.3 kpc) and on proper motions from Gaia’s second data release, shows that PG 1610+062 was probably ejected from the Carina-Sagittarius spiral arm at a velocity of 550 ± 40 km s^(−1), which is beyond the classical limits. Accordingly, the star is in the top five of the most extreme MS disk runaway stars and is only the second among the five for which the chemical composition is known

    Spectroscopic twin to the hypervelocity sdO star US 708 and three fast sdB stars from the Hyper-MUCHFUSS project

    Get PDF
    Important tracers for the dark matter halo of the Galaxy are hypervelocity stars (HVSs), which are faster than the local escape velocity of the Galaxy and their slower counterparts, the high-velocity stars in the Galactic halo. Such HVSs are believed to be ejected from the Galactic centre (GC) through tidal disruption of a binary by the super-massive black hole (Hills mechanism). The Hyper-MUCHFUSS survey aims at finding high-velocity potentially unbound hot subdwarf stars. We present the spectroscopic and kinematical analyses of a He-sdO as well as three candidates among the sdB stars using optical Keck/ESI and VLT (X-shooter, FORS) spectroscopy. Proper motions are determined by combining positions from early-epoch photographic plates with those derived from modern digital sky surveys. The Galactic rest frame velocities range from 203 km s^(-1) to 660 km s^(-1), indicating that most likely all four stars are gravitationally bound to the Galaxy. With T_(eff) = 47 000 K and a surface gravity of log g = 5.7, SDSS J205030.39−061957.8 (J2050) is a spectroscopic twin of the hypervelocity He-sdO US 708. As for the latter, the GC is excluded as a place of origin based on the kinematic analysis. Hence, the Hills mechanism can be excluded for J2050. The ejection velocity is much more moderate (385 ± 79 km s^(-1)) than that of US 708 (998 ± 68 km s^(-1)). The binary thermonuclear supernova scenario suggested for US 708 would explain the observed properties of J2050 very well without pushing the model parameters to their extreme limits, as required for US 708. Accordingly, the star would be the surviving donor of a type Ia supernova. Three sdB stars also showed extreme kinematics; one could be a HVS ejected from the GC, whereas the other two could be ejected from the Galactic disk through the binary supernova mechanism. Alternatively, they might be extreme halo stars

    The fastest unbound star in our Galaxy ejected by a thermonuclear supernova

    Get PDF
    Hypervelocity stars (HVS) travel with velocities so high, that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US\,708. Travelling with a velocity of ∼1200 km s−1\sim1200\,{\rm km\,s^{-1}}, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVS. Furthermore, we discovered US\,708 to be a fast rotator. According to our binary evolution model it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova.Comment: 16 pages report, 20 pages supplementary material

    Impure Aspects of Supersymmetric Wilson Loops

    Get PDF
    We study a general class of supersymmetric Wilson loops operator in N = 4 super Yang-Mills theory, obtained as orbits of conformal transformations. These loops are the natural generalization of the familiar circular Wilson-Maldacena operator and their supersymmetric properties are encoded into a Killing spinor that is not pure. We present a systematic analysis of their scalar couplings and of the preserved supercharges, modulo the action of the global symmetry group, both in the compact and in the non-compact case. The quantum behavior of their expectation value is also addressed, in the simplest case of the Lissajous contours: explicit computations at weak-coupling, through Feynman diagrams expansion, and at strong-coupling, by means of AdS/CFT correspondence, suggest the possibility of an exact evaluation.Comment: 40 pages, 4 figure

    Hot subdwarf stars and their connection to thermonuclear supernovae

    Get PDF
    Hot subdwarf stars (sdO/Bs) are evolved core helium-burning stars with very thin hydrogen envelopes, which can be formed by common envelope ejection. Close sdB binaries with massive white dwarf (WD) companions are potential progenitors of thermonuclear supernovae type Ia (SN Ia). We discovered such a progenitor candidate as well as a candidate for a surviving companion star, which escapes from the Galaxy. More candidates for both types of objects have been found by crossmatching known sdB stars with proper motion and light curve catalogues. The Gaia mission will provide accurate astrometry and light curves of all the stars in our hot subdwarf sample and will allow us to compile a much larger all-sky catalogue of those stars. In this way we expect to find hundreds of progenitor binaries and ejected companions
    • …
    corecore