29 research outputs found
Mucosal immunization with an adenoviral vector vaccine confers superior protection against RSV compared to natural immunity
Respiratory syncytial virus (RSV) infections are the leading cause of severe respiratory illness in early infancy. Although the majority of children and adults mount immune responses against RSV, recurrent infections are frequent throughout life. Humoral and cellular responses contribute to an effective immunity but also their localization at respiratory mucosae is increasingly recognized as an important factor. In the present study, we evaluate a mucosal vaccine based on an adenoviral vector encoding for the RSV fusion protein (Ad-F), and we investigate two genetic adjuvant candidates that encode for Interleukin (IL)-1β and IFN-β promoter stimulator I (IPS-1), respectively. While vaccination with Ad-F alone was immunogenic, the inclusion of Ad-IL-1β increased F-specific mucosal immunoglobulin A (IgA) and tissue-resident memory T cells (TRM). Consequently, immunization with Ad-F led to some control of virus replication upon RSV infection, but Ad-F+Ad-IL-1β was the most effective vaccine strategy in limiting viral load and weight loss. Subsequently, we compared the Ad-F+Ad-IL-1β-induced immunity with that provoked by a primary RSV infection. Systemic F-specific antibody responses were higher in immunized than in previously infected mice. However, the primary infection provoked glycoprotein G-specific antibodies as well eventually leading to similar neutralization titers in both groups. In contrast, mucosal antibody levels were low after infection, whereas mucosal immunization raised robust F-specific responses including IgA. Similarly, vaccination generated F-specific TRM more efficiently compared to a primary RSV infection. Although the primary infection resulted in matrix protein 2 (M2)-specific T cells as well, they did not reach levels of F-specific immunity in the vaccinated group. Moreover, the infection-induced T cell response was less biased towards TRM compared to vaccine-induced immunity. Finally, our vaccine candidate provided superior protection against RSV infection compared to a primary infection as indicated by reduced weight loss, virus replication, and tissue damage. In conclusion, our mucosal vaccine candidate Ad-F+Ad-IL-1β elicits stronger mucosal immune responses and a more effective protection against RSV infection than natural immunity generated by a previous infection. Harnessing mucosal immune responses by next-generation vaccines is therefore a promising option to establish effective RSV immunity and thereby tackle a major cause of infant hospitalization
Filling two needs with one deed: a combinatory mucosal vaccine against influenza A virus and respiratory syncytial virus
Influenza A Virus (IAV) and Respiratory Syncytial Virus (RSV) are both responsible for millions of severe respiratory tract infections every year worldwide. Effective vaccines able to prevent transmission and severe disease, are important measures to reduce the burden for the global health system. Despite the strong systemic immune responses induced upon current parental immunizations, this vaccination strategy fails to promote a robust mucosal immune response. Here, we investigated the immunogenicity and efficacy of a mucosal adenoviral vector vaccine to tackle both pathogens simultaneously at their entry site. For this purpose, BALB/c mice were immunized intranasally with adenoviral vectors (Ad) encoding the influenza-derived proteins, hemagglutinin (HA) and nucleoprotein (NP), in combination with an Ad encoding for the RSV fusion (F) protein. The mucosal combinatory vaccine induced neutralizing antibodies as well as local IgA responses against both viruses. Moreover, the vaccine elicited pulmonary CD8+ and CD4+ tissue resident memory T cells (TRM) against the immunodominant epitopes of RSV-F and IAV-NP. Furthermore, the addition of Ad-TGFβ or Ad-CCL17 as mucosal adjuvant enhanced the formation of functional CD8+ TRM responses against the conserved IAV-NP. Consequently, the combinatory vaccine not only provided protection against subsequent infections with RSV, but also against heterosubtypic challenges with pH1N1 or H3N2 strains. In conclusion, we present here a potent combinatory vaccine for mucosal applications, which provides protection against two of the most relevant respiratory viruses
XCR1 expression distinguishes human conventional dendritic cell type 1 with full effector functions from their immediate precursors
Dendritic cells (DCs) are major regulators of innate and adaptive immune responses. DCs can be classified into plasmacytoid DCs and conventional DCs (cDCs) type 1 and 2. Murine and human cDC1 share the mRNA expression of XCR1. Murine studies indicated a specific role of the XCR1-XCL1 axis in the induction of immune responses. Here, we describe that human cDC1 can be distinguished into XCR1 and XCR1 cDC1 in lymphoid as well as nonlymphoid tissues. Steady-state XCR1 cDC1 display a preactivated phenotype compared to XCR1 cDC1. Upon stimulation, XCR1 cDC1, but not XCR1 cDC1, secreted high levels of inflammatory cytokines as well as chemokines. This was associated with enhanced activation of NK cells mediated by XCR1 cDC1. Moreover, XCR1 cDC1 excelled in inhibiting replication of Influenza A virus. Further, under DC differentiation conditions, XCR1 cDC1 developed into XCR1 cDC1. After acquisition of XCR1 expression, XCR1 cDC1 secreted comparable level of inflammatory cytokines. Thus, XCR1 is a marker of terminally differentiated cDC1 that licenses the antiviral effector functions of human cDC1, while XCR1 cDC1 seem to represent a late immediate precursor of cDC1
Diagnostic performance of four SARS-CoV-2 antibody assays in patients with COVID-19 or with bacterial and non-SARS-CoV-2 viral respiratory infections
SARS-CoV-2 antibody assays are used for epidemiological studies and for the assessment of vaccine responses in highly vulnerable patients. So far, data on cross-reactivity of SARS-CoV-2 antibody assays is limited. Here, we compared four enzyme-linked immunosorbent assays (ELISAs; Vircell SARS-CoV-2 IgM/IgA and IgG, Euroimmun SARS-CoV-2 IgA and IgG) for detection of anti-SARS-CoV-2 antibodies in 207 patients with COVID-19, 178 patients with serological evidence of different bacterial infections, 107 patients with confirmed viral respiratory disease, and 80 controls from the pre-COVID-19 era. In COVID-19 patients, the assays showed highest sensitivity in week 3 (Vircell-IgM/A and Euroimmun-IgA: 78.9% each) and after week 7 (Vircell-IgG: 97.9%; Euroimmun-IgG: 92.1%). The antibody indices were higher in patients with fatal disease. In general, IgM/IgA assays had only limited or no benefit over IgG assays. In patients with non-SARS-CoV-2 respiratory infections, IgG assays were more specific than IgM/IgA assays, and bacterial infections were associated with more false-positive results than viral infections. The specificities in bacterial and viral infections were 68.0 and 81.3% (Vircell-IgM/IgA), 84.8 and 96.3% (Euroimmun-IgA), 97.8 and 86.0% (Vircell-IgG), and 97.8 and 99.1% (Euroimmun-IgG), respectively. Sera from patients positive for antibodies against Mycoplasma pneumoniae, Chlamydia psittaci, and Legionella pneumophila yielded particularly high rates of unspecific false-positive results in the IgM/IgA assays, which was revealed by applying a highly specific flow-cytometric assay using HEK 293 T cells expressing the SARS-CoV-2 spike protein. Positive results obtained with anti-SARS-CoV-2 IgM/IgA ELISAs require careful interpretation, especially if there is evidence for prior bacterial respiratory infections
Cellular and humoral immune responses to SARS-CoV-2 vaccination in patients after CD19.CAR-T cell therapy
Rapid response flow cytometric assay for the detection of antibody responses to SARS-CoV-2
Abstract
SARS-CoV-2 has emerged as a previously unknown zoonotic coronavirus that spread worldwide causing a serious pandemic. While reliable nucleic acid–based diagnostic assays were rapidly available, only a limited number of validated serological assays were available in the early phase of the pandemic. Here, we evaluated a novel flow cytometric approach to assess spike-specific antibody responses.HEK 293T cells expressing SARS-CoV-2 spike protein in its natural confirmation on the surface were used to detect specific IgG and IgM antibody responses in patient sera by flow cytometry. A soluble angiotensin-converting-enzyme 2 (ACE-2) variant was developed as external standard to quantify spike-specific antibody responses on different assay platforms. Analyses of 201 pre-COVID-19 sera proved a high assay specificity in comparison to commercially available CLIA and ELISA systems, while also revealing the highest sensitivity in specimens from PCR-confirmed SARS-CoV-2-infected patients. The external standard allowed robust quantification of antibody responses among different assay platforms. In conclusion, our newly established flow cytometric assay allows sensitive and quantitative detection of SARS-CoV-2-specific antibodies, which can be easily adopted in different laboratories and does not rely on external supply of assay kits. The flow cytometric assay also provides a blueprint for rapid development of serological tests to other emerging viral infection
Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization
Several effective SARS-CoV-2 vaccines are currently in use, but effective boosters are needed to maintain or increase immunity due to waning responses and the emergence of novel variants. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice. In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (TRM); mucosal neutralization of virus variants of concern is also enhanced. The mRNA prime provokes a comprehensive T cell response consisting of circulating and lung TRM after the boost, while the plasmid DNA prime induces mostly mucosal T cells. Concomitantly, the intranasal boost strategies lead to complete protection against a SARS-CoV-2 infection in mice. Our data thus suggest that mucosal booster immunizations after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses
Workflows Community Summit 2024:Future Trends and Challenges in Scientific Workflows
The Workflows Community Summit gathered 111 participants from 18 countries to discuss emerging trends and challenges in scientific workflows, focusing on six key areas: time-sensitive workflows, AI-HPC convergence, multi-facility workflows, heterogeneous HPC environments, user experience, and FAIR computational workflows. The integration of AI and exascale computing has revolutionized scientific workflows, enabling higher-fidelity models and complex, time-sensitive processes, while introducing challenges in managing heterogeneous environments and multi-facility data dependencies. The rise of large language models is driving computational demands to zettaflop scales, necessitating modular, adaptable systems and cloud-service models to optimize resource utilization and ensure reproducibility. Multi-facility workflows present challenges in data movement, curation, and overcoming institutional silos, while diverse hardware architectures require integrating workflow considerations into early system design and developing standardized resource management tools. The summit emphasized improving user experience in workflow systems and ensuring FAIR workflows to enhance collaboration and accelerate scientific discovery. Key recommendations include developing standardized metrics for time-sensitive workflows, creating frameworks for cloud-HPC integration, implementing distributed-by-design workflow modeling, establishing multi-facility authentication protocols, and accelerating AI integration in HPC workflow management. The summit also called for comprehensive workflow benchmarks, workflow-specific UX principles, and a FAIR workflow maturity model, highlighting the need for continued collaboration in addressing the complex challenges posed by the convergence of AI, HPC, and multi-facility research environments
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
Reactogenicity Correlates Only Weakly with Humoral Immunogenicity after COVID-19 Vaccination with BNT162b2 mRNA (Comirnaty®)
mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as BNT162b2 (Comirnaty®), have proven to be highly immunogenic and efficient but also show marked reactogenicity, leading to adverse effects (AEs). Here, we analyzed whether the severity of AEs predicts the antibody response against the SARS-CoV-2 spike protein. Healthcare workers without prior SARS-CoV-2 infection, who received a prime-boost vaccination with BNT162b2, completed a standardized electronic questionnaire on the duration and severity of AEs. Serum specimens were collected two to four weeks after the boost vaccination and tested with the COVID-19 ELISA IgG (Vircell-IgG), the LIAISON® SARS-CoV-2 S1/S2 IgG CLIA (DiaSorin-IgG) and the iFlash-2019-nCoV NAb surrogate neutralization assay (Yhlo-NAb). A penalized linear regression model fitted by machine learning was used to correlate AEs with antibody levels. Eighty subjects were enrolled in the study. Systemic, but not local, AEs occurred more frequently after the boost vaccination. Elevated SARS-CoV-2 IgG antibody levels were measured in 92.5% of subjects with Vircell-IgG and in all subjects with DiaSorin-IgG and Yhlo-NAb. Gender, age and BMI showed no association with the antibody levels or with the AEs. The linear regression model identified headache, malaise and nausea as AEs with the greatest variable importance for higher antibody levels (Vircell-IgG and DiaSorin-IgG). However, the model performance for predicting antibody levels from AEs was very low for Vircell-IgG (squared correlation coefficient r2 = 0.04) and DiaSorin-IgG (r2 = 0.06). AEs did not predict the surrogate neutralization (Yhlo-NAb) results. In conclusion, AEs correlate only weakly with the SARS-CoV-2 spike protein antibody levels after COVID-19 vaccination with BNT162b2 mRNA