23 research outputs found

    Smc5/6 is required for repair at collapsed replication forks.

    Get PDF
    In eukaryotes, three pairs of structural-maintenance-of-chromosome (SMC) proteins are found in conserved multisubunit protein complexes required for chromosomal organization. Cohesin, the Smc1/3 complex, mediates sister chromatid cohesion while two condensin complexes containing Smc2/4 facilitate chromosome condensation. Smc5/6 scaffolds an essential complex required for homologous recombination repair. We have examined the response of smc6 mutants to the inhibition of DNA replication. We define homologous recombination-dependent and -independent functions for Smc6 during replication inhibition and provide evidence for a Rad60-independent function within S phase, in addition to a Rad60-dependent function following S phase. Both genetic and physical data show that when forks collapse (i.e., are not stabilized by the Cds1Chk2 checkpoint), Smc6 is required for the effective repair of resulting lesions but not for the recruitment of recombination proteins. We further demonstrate that when the Rad60-dependent, post-S-phase Smc6 function is compromised, the resulting recombination-dependent DNA intermediates that accumulate following release from replication arrest are not recognized by the G2/M checkpoint

    Smc5/6 maintains stalled replication forks in a recombination-competent conformation

    Get PDF
    The Smc5/6 structural maintenance of chromosomes complex is required for efficient homologous recombination (HR). Defects in Smc5/6 result in chromosome missegregation and fragmentation. By characterising two Schizosaccharomyces pombe smc6 mutants, we define two separate functions for Smc5/6 in HR. The first represents the previously described defect in processing recombination-dependent DNA intermediates when replication forks collapse, which leads to increased rDNA recombination. The second novel function defines Smc5/6 as a positive regulator of recombination in the rDNA and correlates mechanistically with a requirement to load RPA and Rad52 onto chromatin genome-wide when replication forks are stably stalled by nucleotide depletion. Rad52 is required for all HR repair, but Rad52 loading in response to replication fork stalling is unexpected and does not correlate with damage-induced foci. We propose that Smc5/6 is required to maintain stalled forks in a stable recombination-competent conformation primed for replication restart

    Phase 1, first-in-human study of TYRP1-TCB (RO7293583), a novel TYRP1-targeting CD3 T-cell engager, in metastatic melanoma: active drug monitoring to assess the impact of immune response on drug exposure

    Get PDF
    Antibody; Immunogenicity; Metastatic melanomaAnticuerpos; Inmunogenicidad; Melanoma metastásicoAnticossos; Immunogenicitat; Melanoma metastàticIntroduction: Although checkpoint inhibitors (CPIs) have improved outcomes for patients with metastatic melanoma, those progressing on CPIs have limited therapeutic options. To address this unmet need and overcome CPI resistance mechanisms, novel immunotherapies, such as T-cell engaging agents, are being developed. The use of these agents has sometimes been limited by the immune response mounted against them in the form of anti-drug antibodies (ADAs), which is challenging to predict preclinically and can lead to neutralization of the drug and loss of efficacy. Methods: TYRP1-TCB (RO7293583; RG6232) is a T-cell engaging bispecific (TCB) antibody that targets tyrosinase-related protein 1 (TYRP1), which is expressed in many melanomas, thereby directing T cells to kill TYRP1-expressing tumor cells. Preclinical studies show TYRP1-TCB to have potent anti-tumor activity. This first-in-human (FIH) phase 1 dose-escalation study characterized the safety, tolerability, maximum tolerated dose/optimal biological dose, and pharmacokinetics (PK) of TYRP1-TCB in patients with metastatic melanoma (NCT04551352). Results: Twenty participants with cutaneous, uveal, or mucosal TYRP1-positive melanoma received TYRP1-TCB in escalating doses (0.045 to 0.4 mg). All participants experienced ≥1 treatment-related adverse event (TRAE); two participants experienced grade 3 TRAEs. The most common toxicities were grade 1–2 cytokine release syndrome (CRS) and rash. Fractionated dosing mitigated CRS and was associated with lower levels of interleukin-6 and tumor necrosis factor-alpha. Measurement of active drug (dual TYPR1- and CD3-binding) PK rapidly identified loss of active drug exposure in all participants treated with 0.4 mg in a flat dosing schedule for ≥3 cycles. Loss of exposure was associated with development of ADAs towards both the TYRP1 and CD3 domains. A total drug PK assay, measuring free and ADA-bound forms, demonstrated that TYRP1-TCB-ADA immune complexes were present in participant samples, but showed no drug activity in vitro. Discussion: This study provides important insights into how the use of active drug PK assays, coupled with mechanistic follow-up, can inform and enable ongoing benefit/risk assessment for individuals participating in FIH dose-escalation trials. Translational studies that lead to a better understanding of the underlying biology of cognate T- and B-cell interactions, ultimately resulting in ADA development to novel biotherapeutics, are needed.The author(s) declare financial support was received for the research, authorship, and/or publication of this article

    Live-cell single-molecule tracking highlights requirements for stable Smc5/6 chromatin association in vivo

    Get PDF
    The essential Smc5/6 complex is required in response to replication stress and is best known for ensuring the fidelity of homologous recombination. Using single-molecule tracking in live fission yeast to investigate Smc5/6 chromatin association, we show that Smc5/6 is chromatin associated in unchallenged cells and this depends on the non-SMC protein Nse6. We define a minimum of two Nse6-dependent sub-pathways, one of which requires the BRCT-domain protein Brc1. Using defined mutants in genes encoding the core Smc5/6 complex subunits we show that the Nse3 double-stranded DNA binding activity and the arginine fingers of the two Smc5/6 ATPase binding sites are critical for chromatin association. Interestingly, disrupting the ssDNA binding activity at the hinge region does not prevent chromatin association but leads to elevated levels of gross chromosomal rearrangements during replication restart. This is consistent with a downstream function for ssDNA binding in regulating homologous recombination

    Investigating the role of the Smc5/6 complex when replication folks stall

    No full text
    Structural maintenance of chromosome (Smc) complexes have key functions in chromosome formation and segregation. Eukaryotes possess three essential Smc complexes: cohesin (Smc 1/3) which facilitates sister chromatid cohesion, condensin (Smc2/4), which facilitates chromosome condensation and segregation and Smc5/6, the less well-understood third complex. The Smc5/6 heterodimer interacts with the non-Smc proteins Nse1 to Nse6 to form a functional complex, implicated in DNA repair by homologous recombination (HR) and the segregation of repetitive DNA such as ribosomal DNA repeats. Hypomorphic complex mutants are HR defective and loss of Smc5/6 complex functions results in global chromosome fragmentation and missegregation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Metastasis: New insights into organ-specific extravasation and metastatic niches

    No full text
    The appearance of clinically detectable metastases is the end-point of a complex set of biological processes only few cancer cells are capable to complete. Metastatic colonization comprises the most inefficient metastatic steps as it requires a fine-tuned crosstalk between the disseminated cancer (stem) cells and their host microenvironment. The origin of the cancer cell and its intrinsic properties are factors that together with the organ microenvironment and circulation patterns determine the site of metastatic spread, the dormancy period and the extent of metastasis formation. Recent advances provide novel insights into the molecular components required for organ-specific infiltration, the composition of growth-supportive metastatic niches in different tissues and the cancer cell-niche crosstalk. (c) 2013 Elsevier Inc. All rights reserved

    Smc5-Smc6-Dependent Removal of Cohesin from Mitotic Chromosomes â–ż

    Get PDF
    The function of the essential cohesin-related Smc5-Smc6 complex has remained elusive, though hypomorphic mutants have defects late in recombination, in checkpoint maintenance, and in chromosome segregation. Recombination and checkpoints are not essential for viability, and Smc5-Smc6-null mutants die in lethal mitoses. This suggests that the chromosome segregation defects may be the source of lethality in irradiated Smc5-Smc6 hypomorphs. We show that in smc6 mutants, following DNA damage in interphase, chromosome arm segregation fails due to an aberrant persistence of cohesin, which is normally removed by the Separase-independent pathway. This postanaphase persistence of cohesin is not dependent on DNA damage, since the synthetic lethality of smc6 hypomorphs with a topoisomerase II mutant, defective in mitotic chromosome structure, is also due to the retention of cohesin on undamaged chromosome arms. In both cases, Separase overexpression bypasses the defect and restores cell viability, showing that defective cohesin removal is a major determinant of the mitotic lethality of Smc5-Smc6 mutants

    Methadone - not a magic bullet in melanoma therapy

    Full text link
    Methadone (Met) mainly acts as a ÎĽ-opioid receptor agonist. Recent evidence pointing towards the role of Met in sensitization of certain cancer cell lines to chemotherapeutic agents has promoted the hypothesis that Met may be a useful adjuvant to cancer chemotherapy. We wanted to address whether Met has, alone or in combination with a chemotherapeutic agent, an effect on melanoma cell viability in vitro. Only a small fraction (4.3%) of our 102 melanoma biobank cell lines with RNA sequencing data showed expression of the main receptor for Met (OPRM1). We assessed the viability of melanoma cell lines with high, medium or low/no OPRM1 expression (OPRM1 , OPRM1 , OPRM1 ) 72 hours after treatment with Met alone or combined with cisplatin (Cis). Our analyses show that Met alone did not affect cell viability. While Cis/Met treatment did not have an effect on viability of OPRM1 or OPRM1 cell lines, it resulted in a slightly decreased cell viability of OPRM1 cells. Clinically, concurrent temozolomide/Met treatment did not have an effect in our single-case report of a patient suffering from uveal melanoma. Taken together, our findings do not provide evidence for recommending Met as an adjuvant to chemotherapy in melanoma patients. This article is protected by copyright. All rights reserved

    Brc1-mediated rescue of Smc5/6 deficiency: requirement for multiple nucleases and a novel Rad18 function

    No full text
    Smc5/6 is a structural maintenance of chromosomes complex, related to the cohesin and condensin complexes. Recent studies implicate Smc5/6 as being essential for homologous recombination. Each gene is essential, but hypomorphic alleles are defective in the repair of a diverse array of lesions. A particular allele of smc6 (smc6-74) is suppressed by overexpression of Brc1, a six-BRCT domain protein that is required for DNA repair during S-phase. This suppression requires the postreplication repair (PRR) protein Rhp18 and the structure-specific endonucleases Slx1/4 and Mus81/Eme1. However, we show here that the contribution of Rhp18 is via a novel pathway that is independent of PCNA ubiquitination and PRR. Moreover, we identify Exo1 as an additional nuclease required for Brc1-mediated suppression of smc6-74, independent of mismatch repair. Further, the Apn2 endonuclease is required for the viability of smc6 mutants without extrinsic DNA damage, although this is not due to a defect in base excision repair. Several nucleotide excision repair genes are similarly shown to ensure viability of smc6 mutants. The requirement for excision factors for the viability of smc6 mutants is consistent with an inability to respond to spontaneous lesions by Smc5/6-dependent recombination

    Bioinformatics for Precision Oncology

    No full text
    Molecular profiling of tumor biopsies plays an increasingly important role not only in cancer research, but also in the clinical management of cancer patients. Multi-omics approaches hold the promise of improving diagnostics, prognostics and personalized treatment. To deliver on this promise of precision oncology, appropriate bioinformatics methods for managing, integrating and analyzing large and complex data are necessary. Here, we discuss the specific requirements of bioinformatics methods and software that arise in the setting of clinical oncology, owing to a stricter regulatory environment and the need for rapid, highly reproducible and robust procedures. We describe the workflow of a molecular tumor board and the specific bioinformatics support that it requires, from the primary analysis of raw molecular profiling data to the automatic generation of a clinical report and its delivery to decision-making clinical oncologists. Such workflows have to various degrees been implemented in many clinical trials, as well as in molecular tumor boards at specialized cancer centers and university hospitals worldwide. We review these and more recent efforts to include other high-dimensional multi-omics patient profiles into the tumor board, as well as the state of clinical decision support software to translate molecular findings into treatment recommendations.ISSN:1467-5463ISSN:1477-405
    corecore