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Myeloid-T cell interplay and cell state
transitions associated with checkpoint
inhibitor response in melanoma

Ramona Schlenker,1,5,7,* Petra C. Schwalie,2,5,* Steffen Dettling,1 Tamara Huesser,3 Anja Irmisch,4

Marisa Mariani,3 Julia M. Martı́nez Gómez,4 Alison Ribeiro,3 Florian Limani,3 Sylvia Herter,3

Emilio Yángüez,3 Sabine Hoves,1 Jitka Somandin,3 Juliane Siebourg-Polster,2 Tony Kam-Thong,2

Ines Grazina de Matos,3 Pablo Umana,3 Reinhard Dummer,4 Mitchell P. Levesque,4,6

and Marina Bacac3,6

SUMMARY

Background: The treatment of melanoma, the deadliest form of skin
cancer, has greatly benefited from immunotherapy. However, many pa-
tients do not show a durable response, which is only partially explained
by known resistance mechanisms.
Methods:We performed single-cell RNA sequencing of tumor immune
infiltrates andmatched peripheral bloodmononuclear cells of 22 check-
point inhibitor (CPI)-naive stage III–IV metastatic melanoma patients.
After sample collection, the same patients received CPI treatment, and
their response was assessed.
Findings: CPI responders showed high levels of classical monocytes in
peripheral blood, which preferentially transitioned toward CXCL9-
expressing macrophages in tumors. Trajectories of tumor-infiltrating
CD8+ T cells diverged at the level of effector memory/stem-like
T cells, with non-responder cells progressing into a state characterized
by cellular stress and apoptosis-related gene expression. Consistently,
predicted non-responder-enriched myeloid-T/natural killer cell in-
teractions were primarily immunosuppressive, while responder-en-
riched interactions were supportive of T cell priming and effector
function.
Conclusions:Our study illustrates that the tumor immunemicroenviron-
ment prior to CPI treatment can be indicative of response. In perspec-
tive, modulating the myeloid and/or effector cell compartment by
altering the described cell interactions and transitions could improve
immunotherapy response.
Funding: This research was funded by Roche Pharma Research and
Early Development.

INTRODUCTION

Rates of melanoma, the deadliest form of skin cancer, have been continuously rising

over the past decades.1 Cutaneous melanomas originate in melanocytes and are

typically associated with UV light exposure and high immunogenicity.2 This is under-

scored by a high abundance of neoantigens,3 the existence of melanoma-responsive

tumor-infiltrating lymphocytes (TILs), and the efficacy observed upon TILs transfer in

clinical trials.4 The engagement of melanoma-specific T cells by immune checkpoint

CONTEXT AND SIGNIFICANCE

There is an unmet need for

deciphering cancer

immunotherapy response-

predicting factors and

understanding mechanisms

leading to treatment resistance.

Researchers from Roche Pharma

Research and Early Development

and the University Hospital of

Zurich have sequenced tumor and

blood samples of melanoma

patients before they received

checkpoint inhibitor treatment.

They have identified differences

between patients responding and

not responding to treatment,

including distinct immune cell

frequencies, differentiation states,

and putative cell-cell interactions.

Modulating the described

patterns could improve the

response to checkpoint inhibitors.
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blockade and subsequent clinical benefit led to the approval of the anti-CTLA4

antibody ipilimumab in 2011 for metastatic melanoma,5,6 followed by the anti-

PD1 antibodies pembrolizumab and nivolumab in 2014.1,2,7–10 Subsequently,

the combination of nivolumab with ipilimumab or the LAG-3-targeting antibody re-

latlimab has been shown to induce stronger long-term efficacy compared with

monotherapy.1,11–13

Despite these advances, 42% of stage III and IV melanoma patients remain unre-

sponsive to the ipilimumab/nivolumab combination, and 66% show disease pro-

gression within 6.5 years,11 creating the need for a better understanding of cancer

immunotherapy (CIT) response-predicting factors and mechanisms underlying

therapy resistance.2 Recent studies have used the increased resolution provided

by single-cell RNA sequencing (scRNA-seq) to more deeply characterize cell pop-

ulations and states in the tumor microenvironment likely to affect CIT response and

resistance.14–20 Most studies have revealed that the majority of tumor-infiltrating

CD8+ T cells show high expression of exhaustion and/or cytotoxicity markers.14–18

Recently, a TCF1+ PD1+ subpopulation (termed stem-like T cells) has been pro-

posed to be one of the key tumor-reactive CD8+ T cell populations giving rise

to terminally differentiated T cells upon CPI treatment.15,21–24 In melanoma, the

relative fraction of TCF1+ CD8+ cells was found to be elevated in CIT re-

sponders,15,21–24 suggesting that a higher pool of responsive CD8+ T cells may

be beneficial. However, we still have a limited understanding of the relation be-

tween this cell population and effector T cells detected in peripheral blood. In

addition, the relation between effector T cells and myeloid cell populations, crucial

for T cell priming and inhibition by secreting inhibitory signals, has been poorly

explored.

To address these points, we performed scRNA-seq analysis of the CD45+ immune

cell fraction of metastatic melanoma lesions and matched peripheral blood samples

of CPI-naive stage III–IV patients. These patients received CPI treatment after sam-

ple collection, and we monitored their clinical response. Our study reveals cell state

transitions of peripheral blood and tumor-derived immune cells as well as putative

cellular interactions and their association with response to CPI treatment.

RESULTS

Immune cell heterogeneity in tumor tissue and peripheral blood of metastatic

melanoma patients

We performed scRNA-seq of immune cells isolated from surgically resected meta-

static or primary tumor lesions of stage III–IV CPI treatment-naivemelanoma patients

(n = 22) and their corresponding peripheral blood mononuclear cells (PBMCs) (avail-

able for 20 patients) (Table S1, study cohort). The metastatic lesions stemmed from

lymph nodes (n = 11), brain (n= 5), lung (n = 1), and subcutaneous metastases (n = 4),

and one lesion was from a primary melanoma (n = 1). After surgery, patients received

CPI treatment (n = 3 a-CTLA-4, n = 13 a-PD1, n = 5 a-CTLA-4 + a-PD1, and n = 1

a-LAG3 + a-PD1) in the adjuvant setting (n= 13, no evidence of disease after surgery)

and non-adjuvant setting (n = 9, patients had remaining lesions post-surgery) (Fig-

ure 1A). Responders (R) were defined as patients who showed signs of clinical

benefit, including partial and complete response, or remained tumor free (TF)

6 months after treatment initiation. Non-Rs (NRs) were defined as patients who

showed signs of progression within the first 6 months after CPI treatment. The final

scRNA-seq cohort consisted of 134,986 tumor-infiltrating and 114,537 peripheral

blood CD45+ immune cells derived from 9 TF, 3 R, 8 NR (n = 3 adjuvant, n = 5

non-adjuvant), and 2 non-classified patients (STAR Methods).
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Given that increased tumor mutational burden (TMB) has been previously positively

associated with CIT response,25 we also assessed TMB in our cohort. We observed a

trend for higher median TMB in the R group, while the difference was not significant

(Figure S1A; pR 0.1 for all R vs. NR comparisons). Given the limited cohort size, this

result is in line with previous reports, as TMB alone is unlikely to explain the differ-

ence in clinical outcome.

Joint unsupervised clustering of the CD45+ immune cell fraction from tumor le-

sions and peripheral blood resulted in distinct separation of lymphocytes of the

B lineage, T cells, natural killer (NK) cells, and myeloid cells (Figure 1B), irrespec-

tive of their lesion of origin, tumor mutation status (BRAF vs. NRAS), response, or

other variables (Figures 1B and S1B). For each of these major immune cell types,

we identified specific subpopulations characterized by unique marker gene

expression patterns (STAR Methods; Table S2; Figures S1C and S1D): 4 B lympho-

cyte types (naive, memory, germinal center B cells, and plasma cells), 15 T cell

types (naive, memory, effector, cytokine/chemokine-expressing, exhausted-like,

proliferating T cells, and regulatory, cytotoxic/NK-like T cells among the CD4

and/or CD8 subsets), 3 NK cell types (CD56-dim, CD56-bright, and proliferating

NK cells), 5 dendritic cell (DC) subtypes (cDC1/CD141+ conventional DC [cDC],

cDC2/CD1c+ cDCs, activated/CCR7+ cDCs, immature DCs, and plasmacytoid

DCs [pDCs]), 2 monocyte types (classical and non-classical), 3 macrophage sub-

types (M2-like: MARCO+/SPP1+ tumor-associated macrophage [TAM], MSR1+/

C1QC+/TREM2+ TAMs, M1-like: CXCL9+/CXCL10+/ISG15+ TAMs, and a pa-

tient-specific group with mixed characteristics, which we did not further subclas-

sify) (Figure 1C).

Comparing immune cells from blood and tumor lesions, we found large differences

in their frequencies (Figures 1D and S1E; Table S3). For instance, cytokine-express-

ing CD56-bright NK cells; proliferating CD8+, CD4+ T cells; and exhausted-like and

various effector and memory T cell subtypes were exclusively or predominantly

found in tumors. Cytotoxic CD56-dim NK cells, cytotoxic/NK-like T cells, and naive

T cells were mainly found in peripheral blood. B cells were, on average, detected at

similar levels in tumor and blood, while plasma cells were more frequent in tumor le-

sions. With respect to the myeloid lineage, as expected, macrophages were only de-

tected in tumors, while monocytes were the predominant myeloid population in the

peripheral blood. Various types of DCs, particularly CD141+ (cDC1) and CCR7+ (acti-

vated) DCs, were strongly enriched in tumors compared with peripheral blood.

Similarly, while all cell subtypes were detected in most individuals, there was high

variability of the relative cell type frequency among individuals, in particular within

TILs (Figure S2A). To explore how the observed heterogeneity relates to factors

such as individual age, gender, mutation status, CPI response, or tissue of origin

(lesion), we summarized single-cell data per sample (creating pseudo-bulk profiles),

performed principal-component analysis (PCA), and correlated the main compo-

nents with metadata information (STAR Methods). We found that principal compo-

nent 1 (PC1) strongly correlated with mutation status, as most BRAF+ patients (n =

10) grouped separately from NRAS+ patients (n = 7) (Figure S2B). BRAF+ samples

showed an enrichment of (naive) B cells and (naive) CD4+ T cells, while mature

CD8+ subtypes were overrepresented in NRAS+ samples (Figures 1F–1H and S2C–

S2E; Tables S3 and S4). However, the majority of BRAF+ samples originated from

lymph nodes, which also tended to show higher B and naive CD4+ T cell fractions,

as expected. A larger cohort would be required to delineate the main driver of the

observed differences.
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Figure 1. Immune cell heterogeneity in tumor tissue and peripheral blood of metastatic melanoma patients

(A) Overview of the study setup and cohort size of checkpoint inhibitor (CPI)-naive tissue (T) and blood samples (B) and the response classes: adjuvant

(Adj) and non-adjuvant (Nadj); R, responder; TF, tumor free; NR, non-responder.

(B and C) 2D UMAP visualization of all CD45+ cells across both PBMCs and tumor tissue, colored according to main cell type (B) and subtype (C),

sampling location (tissue), lesion of origin (LN, lymph node; Subc, subcutaneous; Sinon, sinonasal), patient mutation (WT, wild type), and CPI response

status (response).

(D) Percentage (Perc.) of selected cell types in PBMCs versus tumor samples across all patients.

(E–G) BRAF- vs. NRAS-mutated sample comparison.

(E) Signature scores for selected differentially enriched T cell-related signatures (Exh, exhausted).

(F) Left: percentage of selected cell types. Right: overview of fraction (Fr) of cell type ratio (BRAF vs. NRAS).

(G) Number (Nr.) of patients stratified by mutation and lesion of origin.

(H) Left: percentage of B cells across main lesions of origin. Right: overview of fraction (Fr) of cell type ratios in LN vs. brain samples.
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CPI R monocytes preferentially transition toward CXCL9-expressing

macrophages

We next examined the relation between immune composition and CPI response.

Consistent with data published by Krieg et al.,26 we detected a higher frequency

of classical monocytes in the blood of CPI R/TF patients compared with NRs

(mean R/TF: 36%/28% vs. NR: 21%/13%, p = 0.041; Figures 2A and S3A;

Table S3). In addition, R/TF patients showed higher proportions of myeloid cells in

both tumor and peripheral blood (Figure 2B). Interestingly, patients with the highest

proportion of classical monocytes in PBMCs also showed the highest relative fraction

of classical monocytes/macrophages in the tumor, revealing a positive correlation

between peripheral blood and tumor tissue (Pearson’s r = 0.55, p = 0.03; Figure 2C).

Moreover, in tumor lesions, we also detected a higher frequency of cDC1s (CD141+

myeloid DCs) (mean R/TF: 1.3%/0.6% vs. NR: 0.3%/0.3, p = 0.028) and a lower fre-

quency of exhausted-like CD4+ T cells (mean R/TF: 1%/2.9% vs. NR: 7%/2.8%, p =

0.032) in R/TFs compared with NRs (Figures 2D and S3A–S3C). In the non-adjuvant

cohort, we further detected a higher frequency of myeloid DCs (mean R: 6.8% vs. NR:

1.2%), macrophages (mean R: 21.8% vs. NR: 6.5% NR), pDCs (R: 1.7% vs. NR: 0.7%),

and classical monocytes (R: 6.8% vs. NR: 0.9%) in Rs (all p < 0.05). In contrast,

germinal center B cells and plasma cells were enriched in NRs (p < 0.01).

Further exploring the characteristics of the myeloid compartment and delving into

the putative relations between cell subtypes, we performed joint clustering, trajec-

tory, and velocity analyses27–30 (Figure S3D; STAR Methods). Classical monocytes

were predicted to transition into macrophages, consistent with the widely accepted

model of monocyte differentiation into macrophages upon tissue entry31 (Figures 2E

and S3D). This transition occurred via a cluster of classical monocyte-like cells pre-

sent in both blood and tumor (Figure 2E, cluster 29), characterized by high expres-

sion of S100A8/12, CD36, MARCKSL1, SELL, and CD300E (Figure 2F; Table S4),

genes previously associated with inflammation, activation, and migration.32–42

Next, we inspected macrophage marker gene expression, considering both

classical in vitroM1 versus M2 classification43 and more recent complex phenotypes

revealed by ex vivo scRNA-seq experiments.44–48 We identified M1-like chemokine-

expressing (CXCL9/10/ISG15+, type I interferon high, cluster 19), M2-like phago-

cytic (MSR1/C1QC/TREM2/FOLR2+, clusters 7 and 13), and M2-like angiogenic

Figure 2. Monocytes of CPI Rs preferentially transition toward CXCL9-expressing macrophages

(A–C) Comparison of relative cell frequencies across response classes: Adj and Nadj.

(A) Percentage (Perc.) of classical monocytes among PBMCs (R+TF vs. NR: p = 0.04).

(B) Overview of fraction of main cell type ratio in PBMCs (top) and tumor (bottom).

(C) Fraction of classical monocytes per sample in PBMCs (x axis) vs. fraction of classical monocytes and macrophages in tumor tissues (Pearson’s r = 0.55,

p = 0.03).

(D) Percentage of selected myeloid subpopulations stratified according to response classes (significant differences: cDC1 R+TF vs. NR, p = 0.03; R vs.

NR_nadj, p = 0.01).

(E) UMAP visualization of transitional classical monocytes and macrophages from both tumor and PBMC samples colored according to Leiden cluster

number (left), cell subtype (center), and sampling location (right). Tumor (TIL, tumor-infiltrating lymphocyte), orange; PBMC, blue. Right: velocity

vectors are projected on the UMAP (streamline plot, where similarly directed vectors are connected).

(F) Relative (standardized column-wise) mean expression of selected marker genes across the clusters and subpopulations shown in (E).

(G) PAGA-estimated transitions between myeloid clusters stratified by response (edge thickness corresponds to transition confidence).

(H) CXCL9 and PTX3 expression overview as representative marker genes for clusters 19 and 12, respectively.

(I) Relative (standardized column-wise) mean expression of genes significantly and consistently differentially expressed, separated by response classes

(R/TF-enriched, top; NR-enriched, bottom) in monocytes (left) and macrophages (right).

(J) TREM1 and NR4A2 expression overview as representative R- and NR-enriched genes, respectively.

(K) Signature scores for Hallmark pathways significantly enriched in R or NR monocytes (mono) and/or macrophages (macro).

(L) Expression of selected genes involved in the pathways shown in (K), summarized per sample and response class. Corresponding selected pathway

memberships are also displayed.
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(MARCO/SPP1/PPARG/VEGFA+, clusters 14, 16, and 22) macrophages, a group of

cells that retained monocyte-specific expression and upregulated immune-regula-

tory markers and showed relatively low major histocompatibility complex (MHC)-

related expression (cluster 12), and finally a group with mixed phenotypes (cluster

23; Figures 2E and 2F). Velocity and partition-based graph abstraction (PAGA) anal-

ysis suggested that transitional monocytes (cluster 29) gave rise to either CXCL9-ex-

pressing macrophages (cluster 19) or, specifically in the NR tumors, to the immune-

regulatory monocyte-like cells (cluster 12). In addition, in Rs, the terminal angiogenic

macrophage population (cluster 14) primarily arose from macrophage populations

with a similar phenotype (clusters 16 and 22) and not only from the monocyte-like

population (Figures 2G and 2H).

We also found significantly higher expression of markers associated with activation,

such as TREM1, LYZ, FCN1, and IFITM2, with a strong enrichment of type I inter-

feron, complement, and mTORC1 signaling pathways in macrophages and mono-

cytes of Rs (Figures 2I–2K; Tables S4 and S5). In contrast, NRs showed highest

CXCL2, CCL3/4, and CCL3L1 expression, enrichment of transforming growth factor

b (TGF-b) signaling, apoptosis, unfolded protein response, and tumor necrosis fac-

tor alpha (TNF-a) signaling, also exemplified by high expression of JUNB, ATF3,

TNF, and BIRC3 (Figures 2I–2L; Tables S4 and S5).

In summary, we found high relative fractions of circulating classical monocytes and

tumor-infiltrating monocytes/macrophage in R/TF patients and identified a transmi-

gratory cell population estimated to preferentially transition into M1-like macro-

phages in R/TF patients. This suggests a putative increased migration and activation

potential of peripheral monocytes in tumors of R patients.

CPI response associates with distinct myeloid-T/NK cell interactions

Myeloid cell populations can shape the tumor microenvironment by providing pro-

or anti-inflammatory signals to effector cells, including CD8+, CD4+ T cells, and NK

cells. We thus investigated whether myeloid populations were estimated to prefer-

entially interact with specific T/NK subsets, using CellphoneDB49 (STAR Methods).

We calculated putative interactions per cell type pair separately per patient

and selected interactions more frequently occurring in either R/TF patients or NRs

that involved genes with expression enriched in the cell type of interest (STAR

Methods). We found that NR samples were typically enriched in interactions

involved in suppressing T cell responses, including TNFRSF10B-TNFSF10 (apo-

ptosis),50 TNF-VSIR/TNFRSF1B/TNFRSF1A/FAS (T cell inhibition and apopto-

sis),51–53 TNFRSF1A-GRN (apoptosis),51–53 and P2RY6-NAMPT (immunosuppres-

sion and M2 polarization),54 among others. In contrast, R/TF-enriched monocyte/

macrophage-T/NK interactions have been shown previously to positively influence

effector cell activation: ICAM1-ITGAL/aLb2 complex (cell migration and lymphocyte

activation)55,56 and CD58�CD2 (T/NK activation and support of cytotoxicity)57,58

(Figure 3A).

Intrigued by the higher frequency of cDC1 in the tumors of R/TF patients (Figure 2D),

we extended the CellPhoneDB analysis tomyeloid DC subtypes. In R/TF patients, we

found an enrichment of XCR1-XCL1 (chemotaxis of cross-presenting DCs),59–61

ICAM1-ITGAL (cell migration and lymphocyte activation),55,56 interleukin-15 (IL-

15)–IL-15R (T cell maintenance and proliferation),62 and TNFRSF14-BTLA (DC

homeostasis and T cell checkpoint)63 interactions. NRs showed enrichments of

P2RY6-NAMPT (immunosuppression and M2 polarization)54 and TNFRSF1A-GRN

(apoptosis)51–53 (Figure 3B). In summary, in R/TF patients, cDC-T cell interactions
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supporting T cell priming, activation, maintenance, and overall cell migration were

more prevalent, while in NR patients, interactions involved in macrophage/mono-

cyte-derived suppression of T cell response and induction of apoptosis were

enriched.

We next assessed which genes estimated in preferential interactions were also

significantly differentially expressed among response groups to gather additional

evidence for their role and/or provide a rationale for the observed interaction

bias. CD44, BTLA, SELL, XCL1, HAVCR2, and TNFRSF1B were significantly more

highly expressed in CD4+, CD8+ T cells, or NK cells of R/TFs, consistent with a higher

frequency of interactions they mediate (Figures 3C and S4A; Table S4). In contrast,

SEMA4A, NAMPT, FAS, ANXA1, ITGAL, and others were more strongly expressed

by effector cells of NRs (Figures 3C and S4A); with the exception of ITGAL, all of

these genes were more frequently estimated to be mediating interactions with

myeloid cells in NRs compared with Rs/TFs, further supporting their putative role

in suppression of T cell functionality.

Finally, as some of these differentially expressed genes were cell type specific and

only differed in the adjuvant/non-adjuvant setting or in specific lesions, we also

asked which genes most consistently discriminated Rs/TFs from NRs (STAR

Methods). Only a handful of genes were stably enriched in R/TF CD8+ and NK cells,

some of which have been shown previously to be involved in maintaining and

enhancing T cell functionality and/or migration (e.g., CD96, AMICA1, and KLRC2)

(Figures 3D and S4B).64,65 Among R/TF-enriched genes in CD4+ T cells were also

PDCD1, GZMB, and PRF1, known markers of antigen experience and cytotoxicity.

In contrast, we found a large number of genes to be consistently more highly ex-

pressed in NRs, including those known to negatively influence T cell response,

such as TNFAIP3, NFKBIA, and BTG2 (Figure 3D).66 In line with the cell-cell interac-

tion results, and similar to the macrophage analysis, genes more highly expressed in

NR T cell subsets were related to apoptosis (ATF3, BIRC3, and ANXA1), TGF-b

signaling (TGIF1 and PPP1R15A), TNF-a signaling (PPP1R15A, BTG3, BTG2, PLEK,

and TNFAIP3), or cellular response to stress (DNAJA1 and PMAIP1), among others

(Figures 3E, 3F, S4C, and S4D; Tables S4 and S5). Taken together, we found that

functional and migratory T cell phenotypes were enriched in Rs/TFs, whereas those

reflective of an apoptotic state were more prevalent in NR patients.

Trajectories leading to T cell dysfunction and cellular stress

To further understand the effector T cell compartment and the origin of the differen-

tially expressed genes identified above, we jointly reanalyzed T cells from blood and

tumor. We first performed joint clustering and trajectory analyses on CD4+ T cells

(Figures S5A–S5D) and then focused on memory and effector subsets for velocity

and PAGA analyses (STAR Methods; Figures 4A–4F and S5). We found the main

Figure 3. CPI response associates with distinct myeloid-T/NK cell interactions

(A and B) Ratio between the fractions of interactions predicted in R/TF vs. NR for (A) macrophages/monocytes and (B) cDC subtypes and CD8+, CD4+,

and NK cell subsets (STAR Methods). Red, interactions occur more frequently in Rs; blue, in NRs; white, equal frequency. The first vs. second partner are

separated by ‘‘_’’ for both cell types and genes. Genes previously positively (green) and negatively (purple) associated with T cell functionality are

highlighted.

(C and D) Relative (standardized column-wise) mean expression of selected genes, summarized per response class for (C) interaction-involved genes

that are also differentially expressed in the selected T cell subsets: effector memory (EM), cytokine-secreting effector (eff), and exhausted-like (exh-like)

and (D) most stably and consistently differentially expressed genes (across tissues and response classes) among CD8+ T cells (top) and CD4+ T cells

(bottom).

(E) Signature scores for Hallmark pathways significantly enriched in R or NR CD8+ T cell subsets.

(F) Expression of selected genes that are members of the pathways shown in (E), summarized per sample and response class.
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directionality leading either from central memory (cluster 0) or from proliferating

CD4+ T cells (cluster 9) toward effector memory T cells expressing markers of cellular

stress (HSPA1A, HSPA1B, ATF3, cluster 5) (Figures 4C and 4D). When stratifying by

response, while both Rs/TFs and NRs showed transitions from cluster 0 to 2 and 5

(central memory to effector memory/cellular stress), only NRs also showed a similarly

strong transition from cluster 6 (effector) toward cluster 5. Strikingly, R/TF-enriched

velocity driver genes were expressed across distinct CD4+ T cell subsets, including

central memory (ITGB1), effector (TIGIT, CXCR6, and CTLA4), and proliferating

(BIRC5 and TOP2A) subsets. This was similar for the genes preferentially involved

in myeloid-CD4+ T cell interactions in R/TF patients (Figures 4E and 4F; BTLA,

TNFRSF1B, and HAVCR2). In contrast, NR-enriched velocity driver as well as interac-

tion-involved genes tended to be most highly expressed in the most terminal,

apoptotic-like cell state, corresponding to cluster 5 (NR4A2, NFKBIA, and

ANXA1), putatively indicating a higher diversity of phenotypes in Rs/TFs vs. NRs.

The velocity analysis of the CD8+ T cell compartment identified the main direction-

ality from naive and memory T cells toward the tumor-specific exhausted-like T cells

(clusters 11, 5, 0, and 6), with cluster 10 (naive) estimated as initial and cluster 5 (ex-

hausted) as themost terminal state (Figures 5A–5F; Figures S6A–S6D; Table S4). This

is consistent with previous literature reports identifying an accumulation of ‘‘bad,’’

exhausted-like, and cytotoxic CD8+ T cells in melanoma tumors14,15,17 (Figure S6C).

A first differentiation path linked naive cells via effector memory to activated and

eventually exhausted-like T cells (clusters 10/16 to 3, 1, 9, and 0/11; Figures 5B–

5D and S6A–S6D; orange in Figure 5E). A second path, specific to tumor-infiltrating

CD8+ T cells, connected the pool of mature CD8+ T cells of cytokine-secreting (clus-

ter 8), and proliferating (clusters 13 and 15) to the exhausted-like populations

(Figures 5B–5D and S6A–S6D; purple in Figure 5E). Latent time estimations were

in line with naive and effector memory cells being the earliest state (clusters 10,

16, 3, and 15), while exhausted-like cluster 5 cells were most terminal (Figures 5F

and S6D). Cells in clusters 1, 13, 8, and 9 showed high heterogeneity of latent times,

suggesting they may harbor transitioning cells, consistent with their positioning in

the cluster connectivity graph. In addition, clusters 8 and 9, expressing TCF7 and

PDCD1 but lacking HAVCR2 (Figure 5B), transcriptionally resembled PD1+ TCF1+

stem-like CD8+ T cells, shown previously to undergo self-renewal and differentiation

to terminally exhausted CD8+ T cells and to mediate the response to CPI therapy.24

Thus, a small subset of tumor-infiltrating CD8+ T cells with characteristics similar to

CD8+ effector memory cells found in circulation as well as a subset of cytokine-

secreting and/or proliferating CD8+ T cells appear to transition into distinct ex-

hausted-like T cell populations in the tumors of melanoma patients. Interestingly,

many genes noted above as preferentially involved in myeloid-T cell interactions

in R/TF patients showed maximal expression in these naive/memory or transitional

subsets (e.g., SELL, XCL1, and BTLA); in contrast, genes involved in NR-enriched in-

teractions showed highest expression in the most terminal CD8+ T cell subsets (e.g.,

HAVCR2, NAMPT, FAS, and SEMA4A) (Figures 5B and 5G), further supporting the

notion that the myeloid-T cell interplay may be involved in shaping T effector

phenotypes.

NR CD8+ T cells are characterized by increased cellular stress and hypoxia

As less terminally differentiated CD8+ T cells have been associated previously with

better patient outcome to CPI treatment,4,15 we assessed the distribution of latent

time values when stratifying across patients and response (Figure 6A). We found

that, in the non-adjuvant setting, NRs tended to have larger latent time values
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Figure 4. CD4+ T cell trajectories indicate increased transitions toward cellular stress in NRs

(A and B) UMAP visualization of CD4+ T cell subsets colored according to subtype (left) or Leiden clusters (right) (A) and relative (standardized column-

wise) mean expression of selected marker genes across clusters (B).

(C) UMAP visualization of CD4+ T cell subsets colored according to sampling location: tumor (orange) and PBMC (blue). Estimated velocity vectors are

projected on the UMAP.

(D) PAGA-estimated transitions between CD4+ T cell clusters (edge thickness corresponds to transition confidence), separated per response class.

(E) Expression of selected genes predicted to be frequently involved in myeloid-T cell interactions in R (BTLA, TNFRSF1B, HAVCR2) and NR (ANXA1).

(F) Left: relative (standardized row-wise) mean expression of velocity driver genes that are also differentially expressed in R/TF vs. NR patients,

respectively. Cells are ordered (ascending) according to latent time estimation. Right: detailed view of the expression of selected heatmap genes in

both categories (R/TF, top; NR, bottom).
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compared with Rs, in particular when considering cells of the heterogeneous transi-

tional populations (clusters 8 and 9). The same trend was present among exhausted-

like cells (Figures 6A and S6E), suggesting a more advanced state toward terminal

differentiation of CD8+ T cells of NR. We next examined the differentiation trajec-

tories in function of response and observed that, in Rs, most likely transitions were

estimated toward clusters 0 and 6 (Figure 6B). In contrast, NR CD8+ T cells preferen-

tially transitioned into clusters 11 and, ultimately, 5, which has been estimated pre-

viously as most terminal in the global analysis (Figure 6B).

To understand which pathways may underlie these differences, we examined veloc-

ity driver genes focusing on the transitions 9 to 11 and 13 to 11/5 in NRs and the tran-

sitions 9 to 0 and 8/13 to 0/6 in Rs/TFs (Figures 6C and S6G; STAR Methods). Our
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Figure 5. Velocity analysis revealed trajectories leading to CD8+ T cell terminal exhaustion

(A) UMAP visualization of CD8+ T cell subsets colored according to subtype (left) or Leiden clusters (right).

(B) Relative (standardized column-wise) mean expression of selected marker genes across the clusters and subpopulations shown in (A).

(C) UMAP visualization of CD8+ T cell subsets colored according to sampling location: tumor (orange) and PBMC (blue). Estimated velocity vectors are

projected on the UMAP (streamline plot, where similarly directed vectors are connected).

(D) PAGA-estimated transitions between CD8+ T cell clusters (edge thickness corresponds to transition confidence).

(E and F) Initial and terminal states (E) as well as cellular latent time estimates (F, left) for the trajectories shown in (C) and (D). Orange, naive to terminally

exhausted; purple, proliferating and cytokine-secreting to exhausted-like and (F, right) latent time distribution per cluster.

(G) Expression of selected genes predicted to be frequently involved in myeloid-T cell interactions in R (SELL, XCL1, and BTLA) and NR (HAVCR2,

NAMPT, FAS, and SEMA4A).
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analysis revealed genes associated with T cell effector function and activation,

including IFNG, GZMB, and GZMH (Figures 6C and S6G; Table S6),67–71 among

the most highly ranked in Rs/TFs. Meanwhile, cell-state transitions in NRs were

driven by genes associated with inhibition of T cell functionality (DUSP1 and

TSC22D3), cellular stress (HSPA1A/1B, PPP1R15A, and DNAJA1), and T cell quies-

cence and exhaustion (BTG1)72–77 (Figures 6C and S6G; Table S6). Comparing the

terminal clusters 5 (NRs) to 6 (Rs/TFs), we identified genes similar to those found

in the velocity analysis; cells of cluster 6 preferentially expressed PRF1, TNFRSF1B,

TIGIT,CCL4L1/2, KLRD1, andCXCR6 (among others, includingKLRC2), while cluster

5 showed high expression of HSPA1A/1B/A6, ATF3, SERPINH1, DUSP1, and
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Figure 6. NR CD8+ T cells are characterized by increased cellular stress and hypoxia

(A) Latent time summarized per patient and response class across all analyzed CD8+ T cells (left) or selected clusters (Adj and Nadj).

(B) PAGA-estimated transitions between CD8+ T cell clusters, stratified by response.

(C) Relative (standardized column-wise) mean expression of velocity driver genes (stratified per response class) that are also significantly differentially

expressed between R and NR; expression is summarized per cluster of interest and response class.

(D) Hallmark apoptosis signature score across all CD8+ T cells (top), summarized per sample and response class (bottom).

(E) Expression of selected genes (from C) across groups of CD8+ T cells, ordered according to increasing latent time values and stratified by response.
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DNAJA1 (among others, including PMAIP1) as well as a general enrichment of

apoptosis and hypoxia pathways (Figures 6C, 6D, and S6G–S6I; Tables S4 and

S5), consistent with the results of the overall CD8+ R vs. NR comparison (Figure 3E).

When examining gene expression along the latent time axis for selected genes, we

observed that, early on, CD8+ T cells of R/TF patients expressed higher levels of

XCL1, a gene known to interact through XCR1 with cDC1s,78 further supporting

the notion that the XCR1-XCL1 axis may be more active in R/TF patients (Figures 3

and 6E). R-specific up-regulation along the time axis was also observed for CXCR6,

KLRC2, AMICA1, and PRF1, markers of antigen-experienced and cytotoxic T cells79

(Figure 6E). In NRs, we observed a transient early increase of DUSP1, involved in in-

hibition of Th1 polarization, T cell activation, and regulation of regulatory T cell sur-

vival. We note that we also detected differences in genes of still unknown function in

effector T cells, such as the transcription factor ZNF331, consistently upregulated in

NR patients, similar to what we observed previously in the myeloid compartment

(Figure 2).

In conclusion, we found the trajectory of CD8+ T cells in R/TF patients to lead toward

a population of cells that, alongside classical exhaustion markers, preferentially ex-

pressed genes involved in T cell maintenance and effector function, consistent with

the notion that, in these patients, pro-inflammatory myeloid-T cell interactions are

supporting a sustained anti-tumor response that could be enhanced by CIT. In

contrast, in NR patients, the path progresses into a population showing high expres-

sion of genes associated with suppressive effects on T cell functionality, cellular

stress, and hypoxia.

DISCUSSION

Despite notable progress in the treatment of metastatic melanoma brought about

by CITs1,2,10 and a highly improved biological understanding of disease characteris-

tics at the molecular level,80 a substantial proportion of patients exhibit an insuffi-

ciently explained lack of response. While several studies have attempted to address

this gap by providing increased molecular resolution of the tumor microenviron-

ment14–17,20,81 and related various identified features to response patterns, few sta-

ble biomarkers beyond TMB and IFNG/T effector-related gene expression have

emerged.25 In addition, no study has systematically explored the relationship be-

tween paired blood and tumor immune cell populations in great depth, despite

the fact that often, in the clinical setting, only peripheral blood samples are avail-

able. Our study uniquely explores and connects the immune cell diversity in tumors

to that in the blood, focusing on the interplay between myeloid and T cell subsets

and their link to CPI response. Our analyses confirm previously observed associa-

tions between immune cell compartments and response, and we generate novel ev-

idence that can be subsequently followed up in larger cohorts and/or with functional

experiments.

Our study reveals that there are marked differences in both cell subtypes and their

frequencies between tumors and peripheral blood. Closely inspecting tumor-

derived immune cell populations, we showed that the relative composition differs

in relation to lesion origin and/or mutational (BRAF vs. NRAS) status. While the asso-

ciation of mutational status and lesion cannot be disentangled given the current

cohort size, higher B/naive T cell fractions in lymph node lesions meet the general

expectation. In addition, the myeloid phenotype of brain lesions could partially be

explained by the presence of microglia. Together, our findings strongly suggest
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that both immune cell origin and patient mutation status should be recorded and

considered in future investigations.

In line with observations of other studies,26 we found higher levels of classical mono-

cytes in theperipheral bloodofR/TFpatientsprior toCPI treatment.Analyzingmatched

PBMCs and tumor immune cells, weobserved a correlation of classicalmonocytes’ rela-

tive fraction in blood to that of classical monocytes and macrophages in tumor lesions.

Further, by performing velocity analysis, we captured the transition of classical mono-

cytes intomacrophages upon tissue entry, similar to previous studies focusing on other

indications.82 Strikingly, the transitional cell population expressed genes involved in

modulating cell (or specificallymonocyte/macrophage)migration34,37,83–85 and inflam-

matory response,32 such asMARCKSL1,CD36, SELL, and S100A8/9/12, among others.

In R/TF patients, the transitional monocytes followed a differentiation path leading to

CXCL9/10-expressing macrophages, also characterized by high levels of interferon

(IFN)-induced genes, such as IFIT2/3 and ISG15. CXCL9 and CXCL10 are IFN-gamma

pathway members and have been reported previously to induce Th1 polarization.86

CXCL9 has also been consistently positively associated with CIT response.25 In addi-

tion, type I IFN production by intratumoral myeloids has been shown to induce NK

cell-DC crosstalk, associated with improved response to CPI treatment.48 Further, the

activation of R/TF macrophage-enriched TREM1 has been found recently to stimulate

anti-tumor immunity.87 Thus, prior to CPI treatment, the tumor immune interactions

of R/TF patients support M1-like macrophage differentiation and putative recruitment

of cytotoxic T and NK cells.

In contrast, in NR patients, we found transitional monocytes to preferentially differ-

entiate into a monocyte-like cell population, showing relatively low MHC gene

expression but high IL10, NLRP3, PTX3, IL1B, and CXCL2 levels, reminiscent of

so-called ‘‘myeloid-derived suppressor cells’’ (MDSCs).88,89 While the immunosup-

pressive and tolerogenic functions of IL10 are broadly known,90 PTX3 has been re-

ported previously to be involved in inhibiting macrophage activation and HLA-DR

expression.91 Further, tumor-associated NLRP3/IL-1 signaling has been suggested

to induce expansion of MDSCs and reduced NK/CD8+ T cell activity, while NLRP3

inhibition reduced melanoma progression.92 Consistently, we also found NR pa-

tients to preferentially display predicted myeloid-T/NK cell interactions that were

indicative of immunosuppression and apoptosis, most notably those involving

TNF, shown previously to dampen CD8+ T cell antitumor reactivity.51

The presence of cDC1 has been associated with better clinical outcome in cancer pa-

tients.93–95 In line with that, we found a higher frequency of cross-presenting cDC1s,

enriched XCR1-XCL1/2 predicted interactions between cDC1 and T/NK cells, as well

as higher levels of XCL1/2 in T and NK cells in tumors of R/TF patients. Activated

CD56-bright NK cells have been described as a main source of XCL1 expression,

consistent with their predominance among the NK populations we describe

here.96 NK cells have been described to pave the way for recruitment of cDC1

into the tumor microenvironment, promoting cancer immune control.48,93 These

findings further support the notion that R and TF tumors present a microenvironment

that promotes cross-priming and activation of tumor-directed T cells, whereas the

environment of NR tumors shapes differentiation into terminal exhaustion and

cellular stress.

Consistently, the analysis of the CD4+ T cell compartment revealed that, in NR pa-

tients, cell differentiation and cellular interactions were mainly driven by genes asso-

ciated with cellular stress and apoptosis. Further, the CD8+ T cell analysis found

ll

Med 5, 1–21, July 12, 2024 15

Please cite this article in press as: Schlenker et al., Myeloid-T cell interplay and cell state transitions associated with checkpoint inhibitor response
in melanoma, Med (2024), https://doi.org/10.1016/j.medj.2024.03.015

Article



CD8+ T cells in R/TFs to be less advanced in their path toward terminal differentia-

tion, in line with previous studies associating naive/memory CD8+ T cell subsets with

better response.15 In contrast, in the tumors of NR patients, CD8+ T cells showed a

differentiation trajectory leading to a state of terminal exhaustion associated with an

enrichment of genes related to reduced effector function, apoptosis, cellular stress,

and hypoxia. TSC22D3, BTG1, and HSPA1A/B were among the top genes driving

the differentiation of CD8+ T cells in NR patients. TSC22D3 has been described to

inhibit NFKB1 nuclear translocation,97 BTG1 to support T cell quiescence76 and,

more recently, the induction of exhausted CD8+ T cells.77 These findings are sugges-

tive of an improper activation of CD8+ T cells, which may lack the stimuli that support

T cell maintenance and function67,73 in the tumors of NR patients. Interestingly, hyp-

oxia has been shown recently to lead to expansion of more terminally exhausted

CD8+ T cells in vitro98 and has been proposed as a putative explanation for the nega-

tive association between CD8+ T cell infiltration and CIT response observed in renal

cell carcinoma99,100 as well as a mediator of CIT resistance in pancreatic cancer.101

Our results raise the intriguing possibility that hypoxia may also mediate CIT resis-

tance in a subset of melanoma patients by altering the phenotype of CD8+ T effector

cells. Finally, our findings are also in line with a recent report that identified the as-

sociation between a stress response state of T cells and resistance to CPI treatment

across several cancer types.102

Conclusions

In conclusion, our study illustrates that the tumor immunemicroenvironment prior to

CPI treatment can be indicative of response. Features enriched in NR patients

include the preferential transition of monocytes into immunosuppressive myeloid

cells, enrichment of predicted immunosuppressive myeloid-lymphoid cell interac-

tions, and more frequent transition of CD4+ and CD8+ T cells into a terminally

exhausted, apoptotic state. In contrast, Rs showed a high frequency of classical

monocytes in the peripheral blood; a preferential transition of monocytes into

CXCL9-expressing, M1-like macrophages upon tumor entry; a high frequency of

cDC1s and cDC1-derived XCR1-XCL1 interactions; as well as a CD8+ T cell expres-

sion profile suggestive of a productive effector state. Collectively, these findings

pose an opportunity to derive novel ways of complementing classical CPI therapy

by targeting pathways involved in myeloid-T cell interactions or immune cell state

transitions toward supporting an anti-tumorigenic microenvironment and maintain-

ing T cell functionality to ultimately improve responsiveness.

Limitations of the study

Our cohort is limited by low patient numbers and high heterogeneity due to distinct

clinical (e.g., treatment types) and biological (e.g., lesion location) factors. While re-

sults should be interpreted with caution, the strength of our study lies in the com-

bined analysis of matched peripheral blood and tumor lesions and the identification

of transitional cell states linking the two. Functional validation in vivo or using pa-

tient-derived tumor explants could strengthen our findings regarding the impact

of myeloid-T cell interactions and immune cell state transitions on CPI response.
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López-Botet, M. (2004). Molecular
Characterization of a Novel Immune Receptor
Restricted to the Monocytic Lineage. JJ.
Immunol. 173, 6703–6711. https://doi.org/10.
4049/jimmunol.173.11.6703.

42. Clark, G.J., Jamriska, L., Rao, M., and Hart,
D.N.J. (2007). Monocytes Immunoselected via
the Novel Monocyte Specific Molecule,
CD300e, Differentiate Into Active Migratory
Dendritic Cells. J. Immunother. 30, 303–311.
https://doi.org/10.1097/01.cji.0000211342.
65964.9e.

43. Vogel, D.Y.S., Glim, J.E., Stavenuiter, A.W.D.,
Breur, M., Heijnen, P., Amor, S., Dijkstra, C.D.,
and Beelen, R.H.J. (2014). Human
macrophage polarization in vitro: Maturation
and activation methods compared.
Immunobiology 219, 695–703. https://doi.
org/10.1016/j.imbio.2014.05.002.

44. Cheng, S., Li, Z., Gao, R., Xing, B., Gao, Y.,
Yang, Y., Qin, S., Zhang, L., Ouyang, H., Du, P.,
et al. (2021). A pan-cancer single-cell
transcriptional atlas of tumor infiltrating
myeloid cells. Cell 184, 792–809.e23. https://
doi.org/10.1016/j.cell.2021.01.010.

45. Zhang, Q., He, Y., Luo, N., Patel, S.J., Han, Y.,
Gao, R., Modak, M., Carotta, S., Haslinger, C.,
Kind,D., et al. (2019). LandscapeandDynamics
of Single Immune Cells in Hepatocellular
Carcinoma. Cell 179, 829–845.e20. https://doi.
org/10.1016/j.cell.2019.10.003.

46. Sharma, A., Seow, J.J.W., Dutertre, C.-A., Pai,
R., Blériot, C., Mishra, A., Wong, R.M.M.,
Singh, G.S.N., Sudhagar, S., Khalilnezhad, S.,
et al. (2020). Onco-fetal Reprogramming of
Endothelial Cells Drives Immunosuppressive
Macrophages in Hepatocellular Carcinoma.
Cell 183, 377–394.e21. https://doi.org/10.
1016/j.cell.2020.08.040.

47. Mulder, K., Patel, A.A., Kong, W.T., Piot, C.,
Halitzki, E., Dunsmore, G., Khalilnezhad, S.,
Irac, S.E., Dubuisson, A., Chevrier, M., et al.
(2021). Cross-tissue single-cell landscape of
human monocytes and macrophages in
health and disease. Immunity 54, 1883–
1900.e5. https://doi.org/10.1016/j.immuni.
2021.07.007.

48. Lam, K.C., Araya, R.E., Huang, A., Chen, Q., Di
Modica, M., Rodrigues, R.R., Lopès, A.,
Johnson, S.B., Schwarz, B., Bohrnsen, E., et al.
(2021). Microbiota triggers STING-type I IFN-
dependent monocyte reprogramming of the
tumor microenvironment. Cell 184, 5338–
5356.e21. https://doi.org/10.1016/j.cell.2021.
09.019.

49. Efremova, M., Vento-Tormo, M., Teichmann,
S.A., and Vento-Tormo, R. (2020).
CellPhoneDB: inferring cell–cell
communication from combined expression of
multi-subunit ligand–receptor complexes.
Nat. Protoc. 15, 1484–1506. https://doi.org/
10.1038/s41596-020-0292-x.

50. Wang, S., and El-Deiry, W.S. (2003). TRAIL and
apoptosis induction by TNF-family death
receptors. Oncogene 22, 8628–8633. https://
doi.org/10.1038/sj.onc.1207232.

51. Donia, M., Andersen, R., Kjeldsen, J.W.,
Fagone, P., Munir, S., Nicoletti, F., Andersen,
M.H., Thor Straten, P., and Svane, I.M. (2015).
Aberrant Expression of MHC Class II in
Melanoma Attracts Inflammatory Tumor-
Specific CD4+ T- Cells, Which Dampen CD8+
T-cell Antitumor Reactivity. Cancer Res. 75,
3747–3759. https://doi.org/10.1158/0008-
5472.can-14-2956.

52. Zhao, X., Rong, L., Zhao, X., Li, X., Liu, X.,
Deng, J., Wu, H., Xu, X., Erben, U., Wu, P.,
et al. (2012). TNF signaling drives myeloid-
derived suppressor cell accumulation. J. Clin.
Invest. 122, 4094–4104. https://doi.org/10.
1172/jci64115.

53. Webster, J.D., and Vucic, D. (2020). The
Balance of TNF Mediated Pathways
Regulates Inflammatory Cell Death Signaling
in Healthy and Diseased Tissues. Frontiers
Cell Dev Biology 8, 365. https://doi.org/10.
3389/fcell.2020.00365.

54. Audrito, V., Serra, S., Brusa, D., Mazzola, F.,
Arruga, F., Vaisitti, T., Coscia, M., Maffei, R.,
Rossi, D., Wang, T., et al. (2015). Extracellular
nicotinamide phosphoribosyltransferase
(NAMPT) promotes M2 macrophage
polarization in chronic lymphocytic leukemia.
Blood 125, 111–123. https://doi.org/10.1182/
blood-2014-07-589069.

55. Yang, L., Froio, R.M., Sciuto, T.E., Dvorak,
A.M., Alon, R., and Luscinskas, F.W. (2005).
ICAM-1 regulates neutrophil adhesion and
transcellular migration of TNF-alpha-
activated vascular endothelium under flow.
Blood 106, 584–592. https://doi.org/10.1182/
blood-2004-12-4942.

56. Blank, C., Brown, I., Kacha, A.K., Markiewicz,
M.A., and Gajewski, T.F. (2005). ICAM-1
Contributes to but Is Not Essential for Tumor
Antigen Cross-Priming and CD8+ T Cell-
Mediated Tumor Rejection In Vivo. JJ.
Immunol. 174, 3416–3420. https://doi.org/10.
4049/jimmunol.174.6.3416.

57. Leitner, J., Herndler-Brandstetter, D.,
Zlabinger, G.J., Grubeck-Loebenstein, B., and
Steinberger, P. (2015). CD58/CD2 Is the
Primary Costimulatory Pathway in Human
CD28�CD8+ T Cells. JJ. Immunol. 195,
477–487. https://doi.org/10.4049/jimmunol.
1401917.

58. Rölle, A., Halenius, A., Ewen, E.M., Cerwenka,
A., Hengel, H., and Momburg, F. (2016). CD2–
CD58 interactions are pivotal for the
activation and function of adaptive natural
killer cells in human cytomegalovirus
infection. Eur. J. Immunol. 46, 2420–2425.
https://doi.org/10.1002/eji.201646492.

59. Dorner, B.G., Dorner, M.B., Zhou, X., Opitz,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-human CD45 FITC Biolegend Cat#304006, RRID:AB_314394

Biological samples

Peripheral blood mononuclear cells of
melanoma patients (Table S1)

Department of Dermatology, University
Hospital Zurich, Switzerland

N/A

Melanoma tumor specimen (Table S1) Department of Dermatology, University
Hospital Zurich, Switzerland

N/A

Chemicals, peptides, and recombinant proteins

Accutase Sigma-Aldrich Cat#A6964

Collagenase IV Worthington Cat#LS004188

DNAse type IV Sigma-Aldrich Cat#D5025

Fc block Biolegend Cat#422302

Hyaluronidase Sigma-Aldrich Cat#H4272

Near-IR APC-Cy7 Live/Dead stain Thermo Fisher Scientific Cat#L34976

Critical commercial assays

Chromium Single Cell 30 Library &
Gel Bead Kit v2, 16 rxns

10x Genomics Cat#PN-120237

Chromium Single Cell A Chip Kits 10x Genomics Cat#PN-120236

Chromium i7 Multiplex Kit, 96 rxns 10x Genomics Cat#PN-120262

SPRIselect Reagent Kit Beckman-Coulter Cat#B23318

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat#Q32854

High Sensitivity DNA Kit Agilent Cat#5067-4626

HiSeq 3000/4000 PE Cluster Kit Illumina, Inc. Cat#PE-410-1001

HiSeq 3000/4000 SBS Kit (150 cycles) Illumina, Inc. Cat#FC-410-1002

Deposited data

Single-cell RNA-seq data ArrayExpress E-MTAB-13770

Software and algorithms

cellranger, version 2.1.1 10x Genomics https://www.10xgenomics.com/support/software/
cell-ranger/latest

besca Mädler et al.103 https://github.com/bedapub/besca

scanpy Wolf et al.104 https://scanpy.readthedocs.io/en/stable/index.html

bbknn Polanski et al.105 https://github.com/Teichlab/bbknn

scvelo Bergen et al.30 https://scvelo.readthedocs.io/en/stable/#

cellrank Lange et al.27 https://github.com/theislab/cellrank

velocyto Manno et al.29 https://velocyto.org/velocyto.py/index.html

cellphonedb Efremova et al.49 https://github.com/ventolab/CellphoneDB

gseapy, enrichr Fang et al.106 https://gseapy.readthedocs.io/en/latest/index.html

edgeR Robinson et al.107 https://bioconductor.org/packages/release/bioc/
html/edgeR.html

vsn Huber et al.108 https://bioconductor.org/packages/release/bioc/html/vsn.html

Hmisc https://hbiostat.org/r/hmisc/ https://cran.r-project.org/web/packages/Hmisc/index.html

camera Wu et al.109 https://rdrr.io/bioc/limma/man/camera.html

lme4 Bates et al.110 https://cran.r-project.org/web/packages/lme4/index.html

Code used for data analysis
and figure generation

https://zenodo.org/doi/10.5281/
zenodo.10792625

https://github.com/bedapub/MelanomaCITResponse_
scRNAseq_TILandPBMC_publication

Other

BD FACS ARIA Fusion III Becton Dickinson GmbH https://www.bdbiosciences.com/en-de/products/
instruments/flow-cytometers/research-cell-
sorters/bd-facsaria-fusion

2100 Bioanalyzer Laptop Bundle Agilent Cat#G2943CA

Qubit 3.0 Fluorometer Thermo Fisher Scientific Cat#Q33216

Chromium Single Cell Controller 10x Genomics Cat#PN-120263

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the lead contact, Ramona Schlenker (ramona.schlenker@

roche.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Single-cell RNA-sequencing data is available in ArrayExpress: E-MTAB-13770

(key resources table).

� Original code related to data analysis and figure generation is shared at

https://github.com/bedapub/

MelanomaCITResponse_scRNAseq_TILandPBMC_publication. Any additional

information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient samples

Cryopreserved peripheral bloodmononuclear cells (PBMCs) and freshly resected tu-

mor specimens of stage III-IV treatment-naive melanoma patients were provided by

the Department of Dermatology, University Hospital Zurich, Switzerland. All patients

received CPI therapy after surgery (Table S1). All human biological samples were

collected after written informed consent from patients was obtained and with

approval of the local ethics committee (Kantonale Ethikkommission Zürich, KEK-

ZH authorization BASEC2017-00494, and BASEC2014-0425) in accordance with

the Declaration of Helsinki.

Progression was defined as measurable increase in tumor volume, the presence of

new metastatic sites or the need to treat the patient with a secondary treatment

such as radiotherapy. In the adjuvant setting, responders were defined as continuing

being tumor-free (TF) at 6 months after treatment initiation.

In Table S1 we report all sample information. Data on socioeconomic status,

ethnicity and ancestry were not collected.

METHOD DETAILS

Tumor dissociation

Tumor lesions were mechanically dissociated and digested using accutase (PAA),

collagenase IV (Worthington), hyaluronidase (Sigma), and DNAse type IV (Sigma).

Single-cell suspensions were stored in liquid nitrogen until further usage.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Cellometer Auto 2000 Cell Viability Counter Nexcelom https://www.nexcelom.com/nexcelom-products/
_undercellometer-fluorescent-viability-cell-counters/
cellometer-auto-2000/

cBOT Illumina, Inc. Cat#SY-301-2002

HiSeq 4000 Sequencer Illumina, Inc. Cat#SY-401-4001
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Flow cytometry

Cryopreserved tumor digests from melanoma samples, as well as autologous

PBMCs were thawed and washed with excess ice-cold 1xPBS and spun down at

350xg for 5 min. Subsequently, the cells were stained with Live/Dead (APC-Cy7

(Near IR), Thermo Fisher Scientific, #L34976) and anti-human CD45 (FITC, Bio-

legend, #304006) in presence of Fc block (Biolegend #422302), and large debris

were removed with a 40-mm strainer (pluriSelect, #43-10040-40). All samples were

acquired on the BD FACS ARIA Fusion III (Becton Dickinson GmbH, Germany). For

scRNA-seq experiments, live and single gated cells were sorted into non-immune

cell (CD45�) and immune cell (CD45+) populations. Both populations were directly

sorted into Eppendorf tubes with 1xPBS supplemented with 1% BSA for scRNA-seq.

Tumor mutational burden measurements

Tumor mutational burden (TMB) was measured in tumor tissue using the compre-

hensive genomic profiling test from Foundation medicine (Roche) and reported as

mutations per megabase (Mts/Mb).

Single cell RNA-sequencing

For all samples, scRNA-seq was performed using Chromium Single Cell 30 GEM, Li-

brary & Gel Bead Kit v2 (10x Genomics, Pleasanton, CA, USA) following the manu-

facturer’s protocol. Briefly, 10000 CD45+ immune cells per sample, diluted at a den-

sity of 100–800 cells/ml in PBS plus 1% BSA (determined by Cellometer Auto 2000

Cell Viability Counter (Nexcelom Bioscience, Lawrence, MA USA)), were loaded

into the 10x Chromium Controller and library preparation was performed according

to the manufacturer’s indications (Chromium Single Cell 30 Library & Gel Bead Kit v2,

i7 Multiplex Kit, Single Cell A Chip (all 10x Genomics), SPRIselect Reagent Kit

(Beckman-Coulter)). The quality and concentration of both cDNA and libraries

were assessed using an Agilent BioAnalyzer with High Sensitivity kit (both

Agilent, Santa Clara, CA USA) and Qubit Fluorometer with dsDNA HS assay kit

(both Thermo Fisher Scientific, Waltham, MA USA) according to the manufacturer’s

recommendation.

The samples were mixed equimolarly and the libraries were clustered using an Illu-

mina cBOT instrument (HiSeq 3000/4000 PE Cluster Kit) and sequenced on an Illu-

mina HiSeq 4000 (HiSeq 3000/4000 SBS Kit, 150 cycles) with a depth of �50,000

reads/cell and the recommended read configuration (R1 = 28, I7 = 8 and R2 = 91).

The output files were converted to FASTQ files using the Cell Ranger pipeline.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single cell RNA-sequencing data processing

Fastq files were aligned to the human transcriptome (hg19) using 10x Genomics Cell

Ranger count (Version 2.1.1) with the parameters "–expect-cells = 6000" and veloc-

yto 0.17 was used to quantify spliced versus unspliced reads. We obtained on

average 33% of unspliced reads across all samples. All cells showing expression of

>200 genes were further merged across all samples and processed with besca’s

2.4 standard workflow, cell annotation workflow and with scanpy 1.4.5.103,104

Filtering was performed with the parameters min_genes = 500, min_cells = 10, min_-

counts = 1000, n_genes = 8000, percent_mito = 0.15; max_counts = 60000. In brief,

RNA counts were normalized per 10k, the top highly variable genes were selected

per sample (parameters ‘batch_key = experiment’), total gene and mitochondrial

reads were regressed out, a Principal component analysis (PCA) was performed,

and the first 50 principal components (PCs) were used for nearest neighbor calcula-

tions and Leiden clustering (resolution = 3),111 as well as for uniform manifold
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approximation and projection (UMAP)-based visualization. Cell annotation was per-

formed using besca’s cell annotation workflow and the sig-annot module (cell type

markers are listed in Table S2), with the nomenclature following cell ontology (CL)

conventions wherever possible (e.g., ‘‘CD141-positive myeloid dendritic cell’’ for

cDC1).112 After an initial, global analysis, myeloid cells, T cells, PBMC-derived and

tumor-infiltrated immune cells were reanalysed and annotated separately and the

final annotation obtained from manual integration of all analysis versions. For the

downstream analyses (differential abundance and differential expression across

response classes) patients 12 and 38 were excluded as CPI-treatment was given

one year post surgery and CPI-treatment was given for one injection only, respec-

tively. The PBMC samples of patients 67, 68, and 87 were excluded from the

response analysis as they were collected after treatment administration; addition-

ally, for patients 79, 64, and 67, which had 2 (either biological or technical) replicates

per patient, we only selected a single one, retaining those with larger cell number,

lower dropout rate, lower overall mitochondrial percentage, and/or higher

sequencing depth.

Trajectory and velocity analysis

Toward the CD8+ T cell velocity analysis, all cells annotated as ‘‘CD8-positive

T cells’’, excluding NK-like T cells, were considered. Bbknn105 was applied using

the patient ID as batch, followed by calculation of diffusion maps (default parame-

ters; n = 15), nearest neighbors (n = 15) based on the diffusion components, Leiden

clustering (resolution = 0.5), PAGA113(default parameters), and finally PAGA-initi-

ated UMAP for visualization. As clusters 2 and 4 were primarily derived from a single

patient (Figure S6E) and clusters 12 and 14 consisted primarily of proliferating cells in

the G2M phase, we excluded them from the velocity analyses described in Figures 5

and 6. We used scanpy 1.6 and scvelo 0.2.2 in dynamical mode to estimate cellular

velocities (direction and speed of individual cells in gene expression space), cellrank

1.0.0 to estimate most likely initial and terminal states and subsequently set the root

cell for latent time (a measure indicative of a cell’s internal clock) estimates. For vis-

ualisation, velocity vectors were projected on the UMAP in a streamline plot, where

similarly directed vectors are connected. Finally, based on RNA velocities and tran-

scriptomic similarity we calculated directed PAGA graphs (parameters root_key =

’initial_states_probs’, end_key = ’terminal_states_probs’, use_time_prior = ’veloci-

ty_pseudotime’) to estimate and visualize most likely transitions across cell clus-

ters/states. We first performed a joint analysis, which included all samples (Figure 5),

and subsequently we analyzed R + TF and NR samples separately (Figure 6), either

across all clusters or only focusing on subpaths of interest - cluster 15, 13, 8, 0, and 11

for the tumor-tumor path and clusters 9, 0, 11, 5, and 6 for the PBMC-tumor path. Per

population of interest and responder population we identified putative velocity

driver genes by using cellrank’s ‘‘lineage_drivers’’ function (cutoff = 0.1). Full results

are listed in Table S6. Genes displayed in Figure 6C contain a subset of such lineage

drivers which are also estimated to be differentially expressed across CD8+ T cell

populations. To generate Figure 6E, we used bins of size = 0.05 across latent time

values (0–1) and visualized expression (log_cp10k) across R and NR cells falling in-

side the respective bins. Latent time values across clusters and response classes

were averaged across all cells of a group and sample and compared across samples

using a Wilcoxon rank-sum test.

Monocyte/macrophage velocity analysis was performed similarly. We first used all

cells annotated as ’macrophage’, ’classical monocyte’ and ’non-classical monocyte’,

applied bbknn (batch_key = patientID), calculated diffusion maps (default, n = 15),

nearest neighbors based on diffusion components (n = 10), Leiden clustering
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(resolution = 0.75), PAGA (default parameters), and PAGA-initiated UMAP for visu-

alization. We subsequently only retained clusters annotated as MSR1, CXCL9, and

MARCO-positive macrophages (14, 16, 19, 2, 23, 7, 13, and 7), as well as classical

monocyte clusters directly transitioning into the macrophage clusters (5, 29, 12).

We used scanpy 1.6 and scvelo 0.2.2 in dynamical mode to estimate cellular veloc-

ities, cellrank 1.0.0 to estimate most likely initial and terminal states and subse-

quently set the root cell for latent time estimates. For visualisation, velocity vectors

were projected on the UMAP in a streamline plot, where similarly directed vectors

are connected. Finally, based on RNA velocities and transcriptomic similarity we

calculated directed PAGA graphs (parameters root_key = ’initial_states_probs’,

end_key = ’terminal_states_probs’, use_time_prior = ’velocity_pseudotime’) to esti-

mate and visualize most likely transitions across cell clusters/states. We first per-

formed a joint analysis, which included all samples (not shown), and subsequently

we analyzed R + TF and NR samples separately (Figure 2G).

For the CD4+ T cell analysis, we first used all cells annotated as CD4+ T cell, applied

bbknn (batch_key = patientID), calculated diffusion maps (default, n = 15), nearest

neighbors based on diffusion components (n = 10), Leiden clustering (resolution =

0.25), PAGA (default parameters), and PAGA-initiated UMAP for visualization. We

subsequently removed 2 regulatory T cell and 2 naive cell clusters, retaining mem-

ory/effector and proliferating populations (clusters 0, 1, 2, 5, 6, 8, 9, 10, 11, 13).

We used scanpy 1.9.4 and scvelo 0.2.5 in dynamical mode to estimate velocities.

For visualisation, velocity vectors were projected on the UMAP in a streamline

plot, where similarly directed vectors are connected. Finally, based on RNA veloc-

ities and transcriptomic similarity we calculated directed PAGA graphs (parameters

root_key = ’iroot’, end_key = ’iroot’, use_time_prior = ’velocity_pseudotime’) to es-

timate and visualize most likely transitions across cell clusters/states. We first per-

formed a joint analysis, which included all samples (Figure 4C). We further analyzed

R + TF and NR samples separately (Figure 4D). We exported genes listed as putative

velocity drivers (velocity_genes = True) in R/TF or NRs, respectively to Table S6 and

displayed those with a fit_likelihood >0.1 in the respective patient group (R/TF or

NR) that were also differentially expressed in at least one CD4+ T cell subset in

Figure 4D.

Cell-cell interaction analysis

Cell-cell interaction analysis was performed using cellphonedb v2.0.0 with default

parameters across all identified tumor immune subsets, per patient. Estimated sig-

nificant interactions (‘‘significant_means’’) involving either monocyte/macrophage

or cDC subsets and T/NK subsets were filtered based on the frequency of interac-

tions in R/TF compared to NR as well as the expression patterns of the genes

involved in the interactions. In brief, we started with all interactions predicted in at

least two patients among a set of cell types of interest. Next, for each cell population

of interest (monocyte-macrophage or myeloid dendritic cell subtype), we only

considered interactions involving a gene that was enriched compared to all other

cells (one-versus-all Wilcoxon rank-sum test, cutoffs fold-change 1.5 and adjusted

p value 0.1). We further removed interactions that were not predicted to occur in

at least half of either R or NR patients. We did not take into account the strength

of the predicted interaction, but contrasted the occurrence of the interactions in

the R/TF versus the NR patients using Fisher’s exact test (per cell type pair), further

removing all predicted interactions with p>=0.3. We further filtered these interac-

tions to those with the abs(max(abs(log10(RvsNR_ratio))) - min(abs(log10(RvsNR_ra-

tio))))>1.25 (for DC, which had fewer interactions) or 1.75 (for monocytes/macro-

phages, which had more interactions) as well as max(abs(log10(ratio)))>1.5, which
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we displayed in Figures 3A and 3B. When looking at intersections with the differen-

tially expressed genes, all the interactions prior to the RvsNR_ratio filtering were

considered.

Differential cell abundance

For comparing cell abundances between R and NR patients in tumors and PBMCs,

respectively, we used a generalized linear mixed effects model approach as described

previously,114 using the lme4 R library, treating each patient (sample) as a random ef-

fect and adding the total counts per cell type as additional weights.110 We performed

both a separate analysis per adjuvance class and a joint analysis, where (R + TF) were

compared to all NR, while factoring adjuvance into the model (glmer(count/total_

count � cell_type + Adjuvant +(1 | PatientID), weights = total_count, family = ’bino-

mial’)). Full results of all comparisons are available in Table S3. The three PBMC sam-

ples collected after the treatment were excluded from the comparison. All other cell

abundance comparisons were performed using a Wilcoxon rank-sum test.

Differential expression analysis

Differential expression (DE) analysis was performed per specified cell subset at cell

level using aWilcoxon rank-sum test, the fold-change of 2 (cluster comparison) or 1.5

(response comparison) and the adjusted p-value cutoff of 0.05 (cluster comparison)

or 0.1 (response comparison). For the response comparison, we performed several

analyses: (1) on all data, when R + TF cells were contrasted to NR cells across lesions

and adjuvance classes; (2) separately on LN, brain and other (all other lesion types)

samples; (3) separately on adjuvant and non-adjuvant patient samples. All significant

DE results, including the specific cutoff used, are available in Table S4. In Figure 2I

only genes showing significant differential expression across both adjuvance classes

(separate adjuvant and non-adjuvant comparisons) and lymph-node only in addition

to the global comparison were included. In Figure 3D (top) we included only a subset

genes showing significant differential expression in at least 4 subsets of interests

(cytokine-secreting, EM, exhausted-like, NK-like, proliferating CD8+ T cells, CD56-

bright, CD56-dim NK cells, or all CD8+ T and NK cells), with significant differences

stable across both adjuvance classes (separate adjuvant and non-adjuvant compar-

isons) and lesions (LN and brain/others separately) in at least one of the subsets. For

CD4+ T cells (Figure 3D, bottom), we included genes significantly differentially ex-

pressed in at least 2 subsets of interest, with significant differences stable across

both adjuvance classes and lesions in at least one of the subsets.

Pathway enrichment analysis

Pathway enrichment analysis was performed using gseapy enrichr106,115 module for

the analysis at the single-cell level, using the top 200 differentially expressed genes

(when available) and all genes showing a mean log(cp10k) expression >0.01 in the

respective cell subset of interest as background. All results are listed in Table S5. Dis-

played signature scores represent the natural log of the p-value multiplied by the Z

score. For Figures 2K and 3E, we only included pathways with a combined score >20

(in any comparison), and further filtered for pathways with an absolute combined

score difference (R vs. NR) > 10 in both monocytes and macrophages (Figure 2K);

cytokine-secreting, effector-memory, or exhausted-like CD8+ T cells (Figure 3E),

or naive and central-memory, effector-memory, effector and exhausted-like, or all

CD4+ T cells (Figure S4C), respectively.

Pseudo-bulk analysis

For the pseudobulk analysis (Figures 1E and S2B–S2E), we summed expression

values across all cells belonging to a sample across all tumor-derived immune cells
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using besca’s pseudobulk function. The subsequent analysis was performed in R,116

using the packages edgeR,107 vsn,108 Hmisc, and camera.109 In brief, genes were

further filtered to have at least as many non-zero samples per gene as the number

of samples in the main groups. Additionally, only genes with above median expres-

sion in samples with <50% zero counts were retained. Data was normalized using

edgeR’s calcNormFactors function (default parameters) and variance stabilization

(vsn), and a principal component (PC) analysis was performed (prcomp function).

Spearman correlations of the top three PCs with the experimental variables were

calculated using Hmiscrcorr and analyzed. The following experimental covariates

showed at least 20% correlation and p-value < 0.05: mutation status (PC1),

cell_subtype (PC2), response (PC3), adjuvance class (PC3) and library size (PC3).

We next performed a differential expression analysis using the edgeR package, fol-

lowed by a pathway enrichment analysis using the camera algorithm, contrasting

either BRAF to NRAS samples (mutation comparison) or lymph node to brain and

other samples, respectively (lesion comparison).

Other scRNA-seq related analyses

Downstream analyses and further plotting were performed using scanpy 1.6 and

1.9.5. Signature enrichment at single cell level was performed using scanpy’s score_

genes method with default parameters. All employed signatures are listed in

Table S2.
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